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Executive Summary 

 The purposes of this environmental scan are: 

 To provide an overview of the technologies of artificial intelligence (AI), machine 

learning, and big data;  

 To explain how these technologies can be used to monitor and forecast the public 

health effects of climate change; and 

 To describe the current (and near future) state of the human resources (HR) and 

data requirements necessary for this goal.   

 In 2008, the Government of Canada published a report (Lemmen, Warren, Lacroix, & 

Bush, 2008) describing the current and expected impacts of climate change across the country. 

This report acknowledged that global temperatures have reached a tipping point making many of 

the consequences unavoidable. As a result, the report included a table of public health risks (see 

Table 1) including the spread of vector-borne illness; heat-related morbidity and mortality caused 

by more frequent heatwaves; severe storms resulting in flooding, hurricanes, and wildfires; and 

air quality impacts from increased pollen and wildfire emissions.   

Understanding the catalysts and effects of these events requires access to and analysis of 

multiple, diverse datasets. For example, monitoring wildfire emissions and forecasting how they 

will spread downwind requires data from satellites and air quality monitors, as well as weather 

forecasts. This paper examines the potential of machine learning to facilitate this data integration 

process due to its ability to analyze big data; find patterns, categorize information, or make 

predictions; learn from the information; and provide near real-time feedback (Alpaydin, 2014).  

Results from the environmental scan indicated the use of machine learning in in research 

related to the health effects of climate change is relatively new and more advanced in some areas 

than others. For example, the use of machine learning to track wildfire emissions is more 

advanced than in research tracking Lyme disease because of access to vast amounts of data 

available in the former area (e.g. satellite images, ground-level radar, air quality monitors), 

which can be used to train machine learning algorithms.  

Being able to conduct this research will require very specific domain knowledge. For 

example, in reference to wildfire emissions, researchers would need to know: what climate 

variables will increase the dispersal of emissions; what concentration of emissions is harmful to 

people with respiratory illness (and the general public) and when is this level likely to be 
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reached; what types and sources of data are needed; and what category of machine learning 

algorithm (i.e. supervised, unsupervised, etc.) is best suited to answer these questions. It is 

improbable that any one person will have expertise in all three domains. Therefore, this 

environmental scan included a search of the Canadian Occupational Projection System (COPS), 

as well as Canadian and United States’ (U.S.) universities in order to assess the available HR 

capacity. The COPS search predicted a deficit of data scientists and computer programmers until 

at least 2026 (Government of Canada, 2019a). Additionally, no university offered a program 

with a focus in all three disciplines. However, a few Canadian universities (such as the 

University of Toronto) have begun to offer degrees in public health with the option to minor or 

specialize in climate change or environmental studies. The top ten Canadian universities also 

offer programs and/or courses in data science, AI and machine learning - presenting the 

possibility of modifying existing programs to incorporate all three topics.  

The rest of the paper is organized as follows: Section 1 contains the Introduction, 

Methods, and technology portions (i.e. AI, machine learning, big data). The Introduction briefly 

explains the public health risks of climate change in Canada and the possibility of incorporating 

machine learning to better understand the problems. Next, the Methods section describes the 

database and grey literature search. The Methods section is followed by a section describing AI, 

machine learning, and big data including definitions, basic principles, and examples of their use 

outside healthcare and climate change research.  

Section 2, is organized by individual public health risk as designated by the Government 

of Canada (Public Health Agency of Canada, 2013a) (see Table 1). ). In addition to these risks, 

Food Security was added because of the consequences currently being faced by Aboriginal 

communities in Canada (particularly the Arctic) such as the early breakup of sea ice. This section 

was designed to function as separate papers describing the individual public health risk, current 

method of monitoring, and potential of machine learning to improve on current methods along 

with the necessary data and infrastructure. If machine learning research was discovered in the 

database search, detail was included about the algorithm(s) used and the types and sources of 

data. This detail was given to serve as a template for evaluation and use by future researchers. 

The number of subsections for a given risk differs depending on the amount of research available 

on monitoring or use of machine learning, and level of detail included in that research.  
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Finally, Section 3 explains the infrastructure and HR requirements, and gives the authors’ 

recommendations. Based on the findings from the environmental scan, recommendations for the 

design, development, and implementation of the surveillance system are provided. The section 

detailing the HR requirements discusses the current and near future capability of the Canadian 

workforce to use machine learning in climate change and public health research. This section 

also contains a discussion about relevant programs and course-work offered by the top ten 

Canadian universities, and competition by the private sector for these graduates.  

1.1 Introduction 

In 2016, the World Health Organization declared climate change, “the greatest threat to 

global health in the 21st Century” (World Health Organization, 2016). Climate change refers to a 

significant and sustained change in global average weather patterns. Previously known as global 

warming, the term climate change has been adopted in recognition of the vast array of weather-

related changes that are becoming the new normal including increased seasonal temperatures, 

more intense storms, and changing patterns of precipitation (Public Health Agency of Canada, 

2013a).  

By the end of the century, global temperatures are expected to be 2° Celsius to 6° Celsius 

higher than at present (National Aeronautics and Space Administration, 2012). While the impact 

will be global, the effects of climate changes will vary by region. Given Canada’s vast land mass 

and topography, the country is expected to face an array of consequences. Canada occupies 

9.985 million km², is bordered on three sides by ocean (i.e. Atlantic, Pacific, Arctic), and spans 

41 degrees of latitude from 42°N to 83°N (Encyclopaedia Britannica, 2019; Séguin et al., 2008). 

In general, Canadian provinces are expected to experience milder winters, warmer summers, and 

changing patterns of precipitation including droughts and severe storms (Public Health Agency 

of Canada, 2013a). More specifically, while temperatures across the country are expected to rise, 

the greatest warming will be seen in the Prairie provinces and Arctic region. The Arctic is 

predicted to see the greatest temperature rise accompanied by loss of permafrost and sea ice. 

Prairie provinces can also expect hotter summers, periods of drought, and periods of intense 

precipitation with increased risk of flooding. Sea level rise on the East and West coast will 

increase the risk of coastal flooding, while the West coast is expected to experience more 

drought-like conditions through the summer months (Public Health Agency of Canada, 2013a) .  
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The problems created by these changes are significant given that societies are adapted to 

exist within long-standing patterns of weather. Our buildings, infrastructure, livelihoods, culture, 

and types and sources of food are influenced by the local climate.  

In From Impacts to Adaptation: Canada in a Changing Climate (Lemmen et al., 2008), 

the Government of Canada stated, the “impacts of changing climate on many physical and 

biological systems, such as ice and snow cover, river, lake and sea levels, and plant and animal 

distributions, are unequivocal” (Lemmen et al., 2008, p. 8). This report provided comprehensive 

evidence of the effects of climate change at regional and national levels, including specific 

impacts to public health.  

Ultimately, the information contained in this report led to a list of four categories of 

public health risk (see Table 1) (Public Health Agency of Canada, 2013a). Warming 

temperatures are expected to facilitate the spread of infectious diseases as mosquitos and ticks 

move farther north. Water- and food-borne pathogens are also expected to increase, for example 

warming water temperatures promote the growth of toxic algae plumes, while warming air 

temperatures aid the growth and survival of E. coli (Public Health Agency of Canada, 2019). As 

temperatures rise, so too will cases of heat stroke and asthma as populations acclimated to 

temperate climates experience more and longer heat waves. Asthma and allergy sufferers will 

also be affected indirectly as warmer temperatures expand the growing season and increase the 

allergenicity of some pollen (Héguy et al., 2008). Finally, extreme heat, pollen, and wildfires are 

all expected to negatively impact air quality, increasing adverse outcomes for people with 

chronic respiratory illnesses (Gerardi & Kellerman, 2014).  

As acknowledged in From Impacts to Adaptation (Lemmen et al., 2008), these 

consequences are already being experienced and are expected to worsen across Canada. Many of 

these changes cannot be prevented, therefore, the key challenge for provincial/territorial and 

federal governments, as well as healthcare professionals will be knowing how to mitigate the 

consequences. In this paper, AI, big data, and machine learning are presented as options for 

monitoring and forecasting some of the consequences of climate change in order to mitigate the 

impacts to public health.  

Big data refers to the large volume of diverse, quickly changing data (Barton, 2019), 

while AI and machine learning are branches of computer science associated with being able to 

process and analyze such information in an “intelligent” manner by using methods such as 
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reasoning or trial-and-error (Abedini et al., 2015; Singh, Martins, Joanis, & Mago). Machine 

learning algorithms may be particularly useful for monitoring and forecasting the effects of 

climate change because they are used for solving problems, categorizing information, and 

making predictions. These algorithms also have the potential to quickly analyze large quantities 

of data and provide vital information in near real-time. As an example, satellites have become an 

attractive option for finding and monitoring wildfires because, unlike ground-based sensors, they 

can scan Canada’s vast landmass multiple times a day. Machine learning algorithms are already 

being used to analyze this information in order to determine fire intensity and forecast the 

distribution of smoke downwind (Yao, Raffuse, et al., 2018).  

This research aims to address four objectives set by the Statement of Work from the 

Climate Change and Innovation Bureau of Health Canada. Briefly these were to: 1) provide an 

overview of big data, AI, and machine learning; 2) explain how these technologies are currently 

being used, or are proposed for use in other sectors and/or government applications; 3) describe 

how the health effects of climate change are currently being monitored in Canada; 4) provide 

recommendations for how machine learning, AI, and big data could be used to improve these 

methods; and 5) outline the broad human resource (HR) and infrastructure requirements 

necessary for this task.  
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Table 1.  Health Risks Associated with Climate Change 

Infectious Disease Extreme Weather Events Higher Temperatures Air Quality 

Water- and food-borne Severe Storms Heat Stroke Heat 

Vector Wildfires Pollen, Allergens, Asthma Pollen 

 Hurricanes and Flooding   

 

1.2 Methods   

Based on the objectives outlined in the statement of work, and identified risks to public 

health, specific combinations of key words were used to search targeted sources of grey 

literature, and the following electronic databases: Scopus, PubMed, CAB Abstracts, and 

Environment Complete.  

The search strategy, including selection of databases was developed in consultation with 

a University of Calgary health sciences librarian and an expert in the field of machine learning. 

The search was limited to English-language articles with full text online published between 

January 1, 2000 and August 1, 2019. Conference abstracts captured through the database search 

were also included when relevant. The following keywords were used, in varying combinations, 

to search the databases: machine learning, big data, public health, climate change or global 

warming (including words specific to Government of Canada identified risks) and food shortage, 

both with and without Canada. Searches were limited to the title, abstract, and keywords of each 

article. To see a list of the database results see Table 2. 

Table 2. Database Results 

                                                 

1 In all cases, for risk related results, the keywords were paired with “climate change” and/or “global warming”, and 

Canada/Canadian  

Public Health Risks of Climate Change in Canada1 Database Results 

Infectious Disease: 

 Vector, food- and water-born, West Nile, Lyme 69 

Extreme Weather:  

 Floods, Hurricanes, Wildfires 754 

Higher Temperatures: 

 Heat Event, Heat Stroke, High Temperatures, Heat  Wave  1022 

Air Quality:  

 Pollen, Aeroallergens, Allergens, Asthma, Respiratory Illness 310 

Food Security: 129 
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 The inclusion of grey literature, including news articles, was also guided by the Canadian 

Agency for Drugs and Technologies in Health (CADTH) grey literature checklist (Canadian 

Agency for Drugs and Technologies in Health, 2019), and the University of Toronto grey 

literature searching guide: “How to Find and Document Grey Literature” (University of Toronto, 

2019). The search of grey literature was targeted – based on the research questions. 

The process was iterative. Once the initial database search was complete, the reference 

section of some articles was explored, and targeted searches were conducted in some journals as 

well as Google Scholar when more detail was required about a particular topic. These articles are 

not included in the numbers shown on the PRISMA chart, but all articles cited are listed in the 

References section.  
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1.3 Artificial Intelligence, Machine Learning and Big Data 

Big data is a term used to describe a data set that is “diverse, complex, disorganized, 

massive, and multimodal” (National Institutes of Health, 2019). More simply, big data has often 

been associated with “5 Vs” that refer to the volume of data included in a data set, the veracity 

(i.e. accuracy and credibility) of the sources, the velocity at which this data is generated and 

changed, the variety or diversity of sources, and the value the data adds to the analysis 

(Anuradha, 2015). Depending on the topic of investigation, big data might also include sources 

like social media posts, audio, video, images, and documents such as medical records. Given the 

dynamic nature of such data, time often becomes an additional variable.  

The challenges associated with big data have fuelled the rapid growth of data science as a 

field in recent years. Data science brings together computer science and statistics to extract 

useful information and knowledge from data (Provost, 2013). Since the complexity and scale of 

big data preclude the use of conventional methods and software, data science focuses on utilizing 

advanced computing techniques such as cloud, parallel, and high-performance computing. 

Furthermore, since most big data sets are collected from the real world with minimal data 

cleansing, an important component of data science is to address the “messiness” of big data, 

which includes missing data, outliers, errors, and discrepancies. Another major component of 

data science is visualization, where the goal is to effectively communicate data characteristics 

and information extracted from the data in an easy-to-understand, visual manner.  

Big data and data science are closely related to machine learning and AI, which fall under 

the umbrella of computer science. AI, in the simplest terms, is technology that has been 

programmed to, and is capable, of problem-solving techniques associated with human 

intelligence such as reasoning, pattern recognition, the ability to adapt to new circumstances by 

drawing on and generalizing from stored knowledge, and learning through trial and error 

(Schmelzer, 2019). Common application areas include natural language processing (enabling 

computers to analyze human language data), image recognition, and/or robotics (Lavigne, 

Mussa, Creatore, Hoffman, & Buckeridge, 2019).  

 To date, machine learning has been one of the most effective and successful ways of 

creating AI systems, although AI can be developed without any machine learning (e.g. rule-

based systems). The widespread success of machine learning in many practical AI applications 

has made machine learning the dominant methodological choice in modern AI research, which 
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has led to the terms AI and machine learning being used interchangeably. The strength of 

machine learning is largely attributable to its paradigm of letting a machine (such as a computer) 

learn from data on its own how to do a given task without explicit programming. Because 

machine learning heavily depends on the quality and quantity of the data it learns from, big data 

and data science are enormously important for its success. Machine learning, like statistics, can 

be used to create a model used for predictions or inferences. However, unlike statistics, machine 

learning does not need to begin with underlying assumptions about the data, such as it being 

evenly distributed around a mean, or that there is a relationship between the independent and 

dependent variables. The drawback of these assumptions is of course, if they are wrong, the 

results are likely misleading or erroneous. 

Machine learning can be described as a four-step process whereby a computer 1) 

analyzes data, 2) “learns” from the data 3) automatically generates an algorithm based on the 

“knowledge” gained from the data, and 4) uses the algorithm to solve a problem, make a 

prediction, or categorize information. The data, as mentioned above, are often referred to as “big 

data” because they are usually collected in bulk from multiple, disparate sources. The system 

then “mines” the data looking for patterns, trends, or similar processes to inform the algorithm 

(Alpaydin, 2014).  

While there are many different kinds of machine learning techniques, deep learning 

(particularly convolutional artificial neural networks) has been the most successful and popular 

technique in recent years, largely thanks to the substantial performance improvements it has 

brought to computer vision (e.g., object recognition in photos) and natural language 

understanding (e.g., digital assistants such as Siri and Alexa) applications (Lecun, 2015). Deep 

learning is a modern extension of artificial neural networks characterized by more sophisticated 

model architectures. Deep learning requires a large amount of data and substantial computing 

power; both of these criteria have only started to be satisfied in recent years thanks to the 

emergence of big data and powerful, yet affordable, computing resources. 

The algorithms used to solve problems, make predictions, or categorize information are 

broadly part of three divisions of machine learning: supervised, unsupervised, and reinforcement 

learning (Vu et al., 2018). Supervised machine learning is used for regression or classification 

tasks. In this process, an algorithm is used to either assign input data to known categories 

(classification) or map the continuous relationship between input and output data (regression). 
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The process is called supervised machine learning because a person knowledgeable about the 

problem, first “supervises” the system by feeding it sample data that are labelled with the correct 

answers or output. Through this method, the system “learns” to create an algorithm that will 

generalize from the training data to previously unseen examples. Once the algorithm is 

established a set of unlabelled examples is entered, this time without the corresponding output in 

order to test the algorithm. This machine learning technique is used, for example, in the detection 

of credit card fraud. In this example, credit card transactions previously determined to be 

fraudulent (or not) would be used to train the system to recognize features of a transaction that 

make it fraudulent, such as purchases in New York and Australia on the same day.  

In unsupervised machine learning, there are no pre-determined labels or relationships 

between input and output data. Instead, unsupervised machine learning is used to find latent 

patterns, associations, or structure within large data sets. (Alpaydin, 2014). This form of machine 

learning is chosen when researchers do not know the answer to the problem and/or, the amount 

of data is too large and complex to be labeled prior to training the algorithm. A familiar example 

of unsupervised machine learning is Amazon product recommendations. A person who buys a 

baby crib, bottles, and diapers might see recommendations for car seats below each item or when 

completing the purchase. These recommendations were automatically generated by the algorithm 

as it learned to recognize items commonly purchased together.   

Finally, in reinforcement learning, the system is given a goal and a set of parameters, then 

allowed to use a process of trial and error to achieve that goal. Reinforcement learning is often 

described as an agent that must make decisions or choose a course of action in an environment. 

Each time a correct decision is made, or a goal is achieved (either the overall goal or a step in the 

process) the system receives a reward in the form of positive feedback. The aim is to achieve the 

objective by following an optimal sequence of actions that lead to the maximum reward. For this 

reason, when a sequence of steps or decisions is used, the feedback is tied to the entire sequence 

rather than individual steps within it. This process of learning through trial and error is by 

definition iterative, and in the case of reinforcement learning, often requires large amounts of 

data. For this reason, reinforcement learning is said to “hunger” for data. Indeed, it is often 

difficult to provide enough data to satisfy the algorithm. This is why reinforcement learning has 

mostly been limited to problem domains where data can be simulated such as board games (e.g. 

chess, Go), or robotics.   
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AI, machine learning, and big data technologies have come a long way and continue to 

advance rapidly. In medicine, for example, AI and machine learning have been some of the 

hottest research topics in recent years as demonstrated by high-profile op-ed articles (Darcy, 

Louie, & Roberts, 2016; Hinton, 2018; Naylor, 2018; Shortliffe & Sepulveda, 2018). However, it 

is important to note that what these technologies can realistically achieve today is still quite 

limited. Not all problems can be solved by these technologies, especially when the problem 

requires general AI (i.e., truly human-like intelligence with the ability to solve a wide range of 

problems) rather than narrow AI that can only perform well in a specific task (e.g., identify 

tumors in MRI images). In addition, regardless of problem domain, large-scale quality data must 

exist and be accessible before machine learning and AI research can begin. This is why within 

medicine the specialties with large-scale digital data, usually imaging data due to the success of 

deep learning in computer vision (e.g., ophthalmology (Gulshan et al., 2016), dermatology 

(Esteva et al., 2017), pathology (Janowczyk & Madabhushi, 2016)), are further ahead in 

harnessing AI.  

In public health, social media and Internet data in general have also been extensively 

researched for population health surveillance (e.g., (J. Liu, Weitzman, & Chunara, 2017; Nguyen 

et al., 2016), most notably the Google Flu Trends (Ginsberg et al., 2009), despite being widely 

criticized for subsequent poor performance and eventually discontinued (Lazer, Kennedy, King, 

& Vespignani, 2014).  

2 Risks of Climate Change to Public Health in Canada 

2.1 Vector-borne Disease  

Climate conditions such as average seasonal temperature and rainfall are determinants of 

the lifecycle and distribution of water-, food-, and vector-borne pathogens. As such, any change 

in these climate variables can augment a stage in the lifecycle of these pathogens. For example, 

increases in precipitation and temperature have been shown to increase the reproductive capacity 

and survivability of water- and food-borne pathogens, as well as hosts of vector-borne disease 

(Semenza et al., 2012). According to the Public Health Agency of Canada (PHAC), five 

pathogens, including the Norovirus (commonly referred to as the stomach flu) and Salmonella, 

are responsible for over 90 percent of water- and food-borne illnesses (Public Health Agency of 

Canada, 2019) infecting over 4 million Canadians each year. Generally causing enteric illness 

with symptoms of nausea, vomiting, diarrhea, headache, fever, chills, and muscle pain, most 
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cases are mild and resolve within a few days (Public Health Agency of Canada, 2006). However, 

some cases lead to hospitalization and even death. Like vector-borne diseases, the lifecycle and 

range of these pathogens are influenced by climate variables including warming air and water 

temperatures, increased precipitation, and severe storms (Public Health Agency of Canada, 

2019). Rising seasonal temperatures also have the potential to expand the range and viability of 

vectors, and food- and water-borne pathogens outside historically endemic areas (Public Health 

Agency of Canada, 2013a, 2013b). This is evidenced by the spread of Lyme disease and the 

West Nile virus in Canada (Gasmi et al., 2018; McPherson et al., 2017; Public Health Agency of 

Canada, 2017; Sonenshine, 2018).  

2.1.1 Lyme Monitoring. No research was found using machine learning methods to 

monitor the spread of Lyme disease in or outside Canada. In Canada, Lyme disease is most often 

monitored through passive surveillance. This system relies on members of the public, clinicians, 

or veterinarians submitting ticks to laboratories for testing or the reporting of human Lyme 

disease cases by provincial and territorial public health organizations. Some active surveillance 

does occur in provinces with a higher prevalence of the blacklegged tick. Active surveillance 

involves the attempted collection of ticks through methods such as “drag sampling” in areas 

considered to be ecologically viable for the species (Clow et al., 2017). However, neither of 

these methods would produce enough data for use with machine learning. Additionally, if 20 

percent of the ticks tested in an area are positive for Lyme, the public health agency may stop 

testing and simply treat persons or pets who are bitten with antibiotics (as is currently the case in 

Ottawa) (Rabson, 2019).  

2.1.2 West Nile Potential of Machine Learning. Researchers are beginning to solve the 

problem of insufficient data in research on the West Nile Virus (WNV) using machine learning. 

Only four studies were found (one without full text online) and all were conducted in the U.S.  

One study (Young, 2013), used a cubist machine learning method, remote sensing data, 

environmental and climate variables, and the theory of landscape epidemiology to predict the 

incidence rate of WNV across the entire U.S. The cubist method uses inductive learning to create 

rule-based decision trees from the data (Young, 2013). Landscape epidemiology describes how 

the temporal dynamics of host, vector, and pathogen populations interact spatially within a 

permissive environment to enable transmission. GIS data consisted of topographic information 

such as the amount and type of vegetation in an area and elevation. Environmental variables 
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included urban vs agricultural land cover. While climate data consisted of temperature and 

precipitation. The strength of the model varied dramatically over the study period (2003 to 

2008). However, overall the study found “temperature, precipitation, elevation [the vegetation 

index], and land cover” were correlated (0.86) with new rates of WNV (Young, 2013, p. 247).  

Another study (Keyel et al., 2019) used a random forest model to examine the 

relationship between 66 climate variables (e.g. temperature and precipitation) and 21 non-climate 

variables (e.g. agricultural vs urban land cover, population density) on the incidence rate of 

WNV in New York and Connecticut. The study found climate variables were the most highly 

correlated with new cases of WNV, specifically the average and low temperatures from July 

through September.  

Finally, a study conducted in Chicago (Gardner et al., 2013) used regression tree and 

random forest to identify natural and artificial features around storm water catch basins that 

make them more likely to have mosquito larvae. Data included water samples from 15 catch 

basins in four Chicago municipalities. Water was tested for larvae and chemistry. In addition, a 

survey was taken of the type, height, and density of trees and shrubs as well as their distance to 

the catch basis. This study showed a positive correlation between the variables of tree density, 

shrub height, and water high in ammonia and/or nitrates and mosquito larvae. While the initial 

study is labour-intensive, the goal was to establish parameters that could be used for more 

targeted eradication of mosquitoes in the future.  

2.1.3 Water- and Food-borne Illness – Potential of Machine Learning. Intense 

precipitation can lead to manure or sewage runoff into drinking or recreational water sources, 

which can result in gastroenteric illness from E. coli or Giardia duodenalis. However, no study 

used machine learning techniques to forecast this problem.  

Only one study was found that used machine learning methods to monitor food- or water-

borne illness. This study used a random forest model to forecast the incidence of toxic algae 

blooms off the coast of British Columbia (B.C.). Warming waters are contributing to the 

frequency of these blooms, which are known to carry a neurotoxin. The algae are absorbed by 

shellfish in the area increasing the likelihood that it could be ingested by humans leading to 

paralytic shellfish poisoning, a potentially fatal illness (Finnis, Krstic, McIntyre, Nelson, & 

Henderson, 2017). The shellfish are regularly monitored at multiple sites around the island. 

Therefore, the data from samples collected from 2002 to 2012 were analyzed along with 
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environmental variables such as air temperature, sea surface salinity, sun light penetration 

through the water, upwelling (i.e. a rising of cooler nutrient-rich water), and sea surface 

temperature. These were not the only environmental variables, but these were the variables that 

had the most influence on the model. For more information see Finnis et al., (2017).  

2.2 Air Quality: Heat and Aeroallergens 

“Extreme heat is a leading cause of illness and death from weather-related hazards in 

Canada” (McLean et al., 2018). Symptom of heat related illnesses directly related to heat 

exposure include muscle cramps, heat rash, exhaustion, fainting, and heat stroke. Indirectly, 

extreme heat has also been correlated with urinary and kidney stones, stroke, sudden infant death 

syndrome, and adverse outcomes for persons with respiratory or heart disease.  

Climate change is expected to increase the “frequency, length and severity” of extreme 

heat-events (Health Canada, 2011). Compounding this problem, heat-related mortality exists on a 

curve. Effects of a heat wave occur on the first day of the event, but heat-related illnesses and 

mortality may persist for three days after and up to 15 days for people with respiratory illness 

(Gachon et al., 2016). Additionally, persons residing in cities with less seasonal variability, are 

susceptible to heat stress at lower temperatures because they have less experience with periods of 

extremely hot weather. For example, one study found the temperature threshold in Calgary, for 

heat-related morbidity began at 20 Celsius. Similarly, areas of northern British Columbia saw 

susceptibility rise at 14 Celsius, while the temperature threshold in Windsor was 27 Celsius 

(McLean et al., 2018).  

In addition to extreme heat events, the global temperature rise associated with climate 

change has also lengthened the growing season of pollen producing plants and increased the 

amount of pollen produced, as well as the allergenicity of some pollen (Héguy et al., 2008). This 

is another public health concern because numerous studies have shown a correlation between 

elevated pollen concentrations and increased emergency hospitalizations, particularly for 

children under 10, due to asthma-related symptoms (Gerardi & Kellerman, 2014; Héguy et al., 

2008). 

2.2.1 Heat Monitoring. As a result, Environment and Climate Change Canada (ECCC) 

has developed 22 regional thresholds at which heat warnings are issued to the public 

(Environment and Climate Change Canada, 2010). Alerts are triggered when temperatures are 

predicted to be 5 Celsius to 10 Celsius above average highs for two or more days. The 
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thresholds also take nighttime lows into consideration, as well as health-related impacts and 

socio-economic vulnerabilities (Gachon et al., 2016; Johnson, 2018). The forecasts are produced 

using high resolution models and real-time analysis by meteorologists. Experienced 

meteorologists can easily detect weather patterns indicative of a heatwave allowing ECCC to 

anticipate a high temperature event up to 10 days in advance at a 25km resolution, down to 10km 

within two days of the event (Gachon et al., 2016).  

A similar system was implemented across Quebec in 2010. Developed to provide “real-

time Surveillance and Prevention of the impacts of Extreme Meteorological Events (SUPREME) 

on public health” (Toutant, Gosselin, Belanger, Bustinza, & Rivest, 2011). The model uses open 

source software to collect meteorological and health data, analyze the impact of forecasted 

meteorological events on public health, and disseminate warnings to public health officials, and 

emergency management coordinators (Gachon et al., 2016). Forecasts from Environment Canada 

are assessed using a 3-day weighted average and compared to regional thresholds established by 

the Quebec National Institute of Public Health. If a forecast meets or exceeds a threshold, an 

alert is automatically sent to the relevant municipal and public health authorities. SUPREME is 

considered relatively reliable based on an evaluation from 2010 to 2015, which found, of the 77 

alerts issued, 44 correctly forecast episodes of extreme heat. In total 93 heat waves occurred 

during this period, meaning the system also missed issuing 16 alerts (Gachon et al., 2016). 

Meteorological data includes forecasts collected hourly from Environment Canada of the 

minimum and maximum temperature, and humidity over the following 24, 48, and 72 hour 

periods; as well as air quality data from the Quebec Ministry of Sustainable Development 

Environment and Parks (Toutant et al., 2011). Health data is drawn from daily emergency 

department and hospital admissions, and a daily health report (Toutant et al., 2011). The model 

also collects geospatial data including Landsat images to identify urban heat islands, and census 

data (e.g. sociodemographic information, age, population density) for the purposes of identifying 

vulnerable populations. SUPREME integrates this information into a portal that users can query 

with any of the above variables. For example, to identify vulnerable populations, a user could 

search for urban heat islands in proximity of populations 75 years or older; or places capable of 

providing relief such as public buildings, cooling centres, pools, and beaches.  

2.2.2 Heat - Potential of Machine Learning and Big Data. Outside Canada, the 

European Heat Wave Pipeline was recently developed “for predicting and mapping heat waves” 
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(Gobbi, Alikadic, Ylinen, Angaramo, & Furlanello, 2017, p. 3734). Input for the model includes 

a rasterized map of Europe showing a 14-day forecast of the maximum temperature - provided 

daily by the Finnish Meteorological Institute. (Maximum temperatures are calculated using an 

ensemble prediction model with a spatial resolution of 18 km.). In addition, 32 years of daily 

maximum temperature data from the European Climate Assessment and Dataset are used to 

establish heat wave thresholds. Together this information is used to produce a grid of thresholds 

that are assigned to ‘Local Administrative Units’. These sources of information are fed into an 

algorithm that can map a heat wave, including information on “duration and intensity”, to a 

specific, local administrative unit for the following 14-day period. Since the indications of a heat 

wave are mapped to a specific location and threshold, the data can be compared across regions 

and timeframes. Efficacy was demonstrated when the system was able to predict the 2017 

European heat wave. A comparison of the raster maps produced by the European Heat Wave 

Pipeline with alerts issued by Meteoalarm (the forecasting and alerts system of The Network of 

European Meteorological Service), showed the system was able to accurately predict the length, 

location, and magnitude of the heatwave (Gobbi et al., 2017).  

 The process was designed to be relatively straightforward, easily replicable, and 

inexpensive. Both historical and forecast data for the study were provided as netCDF files. These 

are common file formats for accessing and sharing multidimensional data making them ideal for 

forecasts that often include temperatures, precipitation, humidity, wind speeds, etc. The data was 

extracted from these files and uploaded to PostgreSQL – a free, opensource database. Scripts 

were written in R, a free statistical software system, and run on the PostgreSQL database using a 

“standard lap top” (Gobbi et al., 2017, p. 2). The authors stated extraction of the forecasts from 

the Finnish Meteorological Institute took approximately five hours followed by one hour to 

calculate the heatwave forecast. The thresholds were calculated once a year and took 

approximately one day.  

Another study (Wang et al., 2019) conducted in seven cities across China employed a 

random forest model to improve the prediction of heat stroke using meteorological data 

including the previous one to three days’ maximum temperature and relative humidity as well as 

the average temperature and relative humidity over the past five years, structural data such as the 

percentage of impermeable area, and socio-economic variables including the number of houses 

with air conditioners and proportion of rural versus urban households. These variables were 
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examined alongside Internet searches for the phrase “heat stroke”. Meteorological and search 

engine variables were divided into timeframes of one to five days (i.e. relative humidity of the 

last 5 days) and collected during the summer months2 for the years, 2012 to 2015. Variables were 

entered using a one-day lag with the goal of creating lead time of at least a day for the prediction 

of heat stroke. The authors found that the variables of maximum temperature, relative humidity, 

and Internet searches for “heat stroke” all on the previous day, contributed the most to the model.  

It appears researchers are just beginning to use machine learning and big data to improve 

prediction of heat waves and the resulting public health effects. However, the detailed 

explanation of the types and sources of data in the above studies, increase the possibility of 

replication. In particular, the authors of the European Heat Wave Pipeline study stress that, “The 

whole pipeline can easily be reproduced in any spatial resolution, geographic location, or time 

period if both historical data and forecast temperatures are available” (Gobbi et al., 2017). 

Environment Canada provides daily and sometimes hourly weather data from all of its weather 

stations (n=8,771). Historical data are also available, in some cases as far back as 1840 

(Government of Canada, 2019b). This data includes weather information such as the minimum 

and maximum temperature, humidity, and precipitation. Environment Canada also provides 

seven-day forecast data. This information is available in comma separated value and XML 

format for easy incorporation into statistical packages such as R as in the Gobbi et al., (2017) 

study.  

Apart from similar weather and climate data, the Wang et al., (2019) study included 

population data such as GDP per capita, population density, and proportion of residents 65 and 

older. Comparable data is available from Statistics Canada. For a detailed list of comparable 

types and sources of data, see Table 2.  

  

                                                 

2 Actual months not specified 
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Table 3. Variables and Sources of Data – Extreme Heat 

Data Source 

Census and Population-level  

 Population Density 

 GDP per Capita 

 Urban vs Rural Households 

 Proportion of Population 65 

 Internet Penetration 

 Air Conditioners per 100 Households 

Statistics Canada 

 

Meteorological 

 Temperature (max. min. avg.; historical, forecast) 

 Humidity (historical, forecast) 

 Wind Speed 

Environment Canada 

 

Finally, the inclusion of Internet keyword queries to enhance syndromic surveillance has 

been in use for over a decade (Olson, 2013). A recent (2013) survey by Statistics Canada found 

that 70 percent of people with a home Internet connection report using it for health-related 

queries (Canada, 2013). The current version of Google’s search engine query tool is Google 

Trends.3 This tool displays the popularity of a search term or phrase for a specified timeframe 

(e.g. 2000 to August 2019) and location (e.g. worldwide, Canada, Alberta, etc.). The tool also 

generates a list of related words along with their popularity within the same time and location. 

Google Trends also has the ability to compare the popularity of words or phrases, for example: 

signs of heat stroke compared to symptoms of heat stroke to understand which phrase is more 

common. The results can be downloaded in comma separated value format for easy upload into 

statistics packages such as SPSS or SAS. Graphs and maps displaying the results can also be 

embedded into any HTML page and kept current by linking the display to Google Trends 

(Google Trends, 2019).  

 2.2.3 Air Quality Monitoring. The direct and indirect costs of asthma are estimated to 

be $2.1 billion annually in Canada. These costs are associated with physician services, 

hospitalizations, and medication costs (Asthma Canada, 2019). Despite the high cost of asthma-

related symptoms, and the correlation with pollen, a recent Canadian study (Li et al., 2019) 

found tracking the “onset, duration and severity of [the pollen season] is difficult, because of 

                                                 

3 Previous version of Google search engine query tools used in research on syndromic surveillance were: Google 

Adworks Keyword and Google Insight 
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insufficient stations and/or monitoring networks” (p. 267). Pollen counts for the majority of the 

Canadian population are provided by the Aerobiology Research Laboratories which operate 30 

monitoring stations in and around major population centres. Samples from the stations are 

collected daily and sent for analysis. Pollen counts from this organization are used by The 

Weather Network, to provide information and issue alerts when the pollen concentration is 

expected to affect public health (Martins, 2018). The obvious drawbacks of this system are, the 

delay between collection, analysis and alerts; and the lack of monitoring in more rural areas.  

2.2.4 Air Quality - Potential of Machine Learning. Only one article was found 

describing the use of machine learning to predict daily pollen count (Zewdie, Lary, Liu, Wu, & 

Levetin, 2019). In this study, NEXRAD weather radar data were fed into both an artificial neural 

network (ANN) and random forest algorithms to estimate daily ragweed pollen in a 300km x 

300km area around the radar (located near the University of Tulsa, Oklahoma). NEXRAD is a 

system of approximately 160 weather radar located in the U.S. that collect data on precipitation, 

cloud cover, and wind speed and direction. These variables are known to affect the release and 

dispersal of pollen in the atmosphere. The two machine learning methods were used in order to 

develop and test different models for estimating pollen levels.  

 Artificial neural networks were designed to mimic the processing of information in the 

human brain. While individual neurons in the brain can pass information to any other nearby 

neuron, ANNs have individual layers. Each layer of artificial neurons will assign a weight 

estimating how likely the input is to complete a task or answer a question (e.g. does this image 

contain a human face?). The weights are based on training data previously fed to the system with 

the correct path or answer. Using the weights, the algorithm produces a response along with a 

probability indicating how “sure” the algorithm is of that response.  

 The NEXRAD weather radar near the University of Tulsa began observations in 1987, 

with observations from 1995 to the present accessible to researchers. This allowed the authors to 

train the algorithms using data from 1995 to 2014. Both algorithms created similar models 

displaying the concentration and distribution of pollen within the study zone.  

2.2.5 Wildfire Emissions. Forest fires are increasing in frequency and severity across 

Canada representing a serious concern for public health. According to Natural Resources 

Canada, over the last ten years, forest fires have burned an average of three million hectares a 

year (Natural Resources Canada, 2019). In addition to the physical threat of fire, smoke 
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emissions can be carried downwind for thousands of miles diminishing the air quality for 

populations both near and remote to the fire (Government of Canada, 2013).  

Emissions from forest fire smoke include a variety of air pollutants including particulate 

matter. Particulate matter (specifically 𝑃𝑀2.5) is a mixture of natural and synthetic compounds in 

liquid or solid form. 𝑃𝑀2.5, which is often found in higher concentration in forest fire emissions, 

is commonly examined in studies of wildfire smoke and human health. The number designation 

(2.5) refers specifically to the size of the particles which are light enough to stay aloft for long 

periods of time increasing the likelihood that they will be inhaled (Yao, Brauer, Raffuse, & 

Henderson, 2018). The effects of this pollutant on public health have been widely examined with 

studies reporting increased dispensation of asthma-related medications, and increased 

hospitalizations and mortality from asthma, respiratory, and cardiovascular disease (Yao, Brauer, 

& Henderson, 2013). 

2.2.6 Wildfire and Emissions Monitoring. As stated above, the frequency and intensity 

of forest fires is expected to grow, increasing smoke emissions and affecting air quality for 

populations both near and distant from the fire. Environment Canada uses the Air Quality Health 

Index (AQHI) to monitor air quality and issue alerts when emissions are high (Environment and 

Climate Change Canada, 2007). The AQHI measures air quality on a ten-point scale (1=low risk; 

10=high risk) and alerts are issued along with messages for both the general population and those 

at greater risk of adverse health effects from smoke emissions. These alerts reflect current, local 

air quality levels. In an attempt to mitigate the most serious public health impacts of wildfire 

smoke, the Government of Canada also employs the FireWork Wildfire Smoke Prediction 

System. FireWork predicts how smoke from wildfires is expected to grow or travel during a 48-

hour period. The forecasts are based on information regarding current fire hotspots, fuel type and 

availability; as well as meteorological forecasts and data on levels of 𝑃𝑀2.5 and ground-level 

ozone (𝑂3) (Government of Canada, 2013).  

In addition to emissions forecasting, Natural Resources Canada developed the Fire M3 

system for “Monitoring, Mapping, and Modeling” fire behaviour (Natural Resources Canada, 

2019). To accomplish this goal, satellite images of fire hot spots are obtained from the United 

States Forest Service (USFS), the National Atmospheric and Space Administration (NASA), the 

National Oceanic and Atmospheric Administration (NOAA), and the University of Maryland 

(Natural Resources Canada, 2019). The satellite images are then analyzed alongside current and 
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forecasted weather conditions, topography at and around the fire, and fuel type and availability. 

The combined information is used, not only to detect actively burning fires, but also to predict 

their course and estimate the total area burned on a daily and yearly basis.  

In addition to FireWork and Fire M3, two wildfire smoke forecasting platforms, BlueSky 

and FireSmoke Canada operate mainly out of the University of British Columbia. BlueSky is a 

smoke forecasting system administered by the University of British Columbia. The system 

predicts how smoke will affect communities both adjacent to and distant from the fire by 

analyzing the smoke plume and forecasting its path over a 48-hour period (and up to 60 hours).  

The system operates by measuring the initial height of the plume then using information 

from Natural Resources Canada about the fire including size, location, and forest type. This 

information is combined with meteorological forecasts from the University of British Columbia 

to predict the height of the plume downwind. Downwind height is important because the higher 

the emissions particles are injected into the atmosphere, the farther they can be carried and the 

greater the opportunity to affect air quality and public health. Forecast information (including 

predicted levels of 𝑃𝑀2.5) are available to “professionals in the air quality, health & safety, 

emergency management, and science & research communities as well as the public” through the 

FireSmoke Canada website. This site uses the data provided by BlueSky and integrates it with a 

geographic information system to offer interactive maps of the smoke forecasts.4  

In 2013, to examine the efficacy of BlueSky forecasts, Yao et al. (2013) compared plume 

forecasts from BlueSky Canada with observations made by NOAA. The study found “modest 

agreement between BlueSky forecasts and NOAA observations. The authors also examined the 

association of BlueSky forecasts with an increase of asthma-related symptoms. Data from B.C. 

PharmaNet and the B.C. Medical Services Plan Billings database revealed a forecasted increase 

in 𝑃𝑀2.5 correlated with an increase in physician visits for asthma and an 8 to 12 percent 

increase in the dispensation of asthma-related medications. 

FireSmoke is a portal where users can access and generate emissions forecasts. 

FireSmoke uses BlueSky Canada to produce hourly forecasts of surface-level 𝑃𝑀2.5 

accumulations for the following 48 hours. In addition to forecasts, the portal offers users the 

ability to create emissions scenarios for controlled burns and wildfires.  

                                                 

4 FireSmoke website: http://firesmoke.ca/forecasts/ 
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2.2.7 Wildfires - Potential of Machine Learning. Given Canada’s landmass, satellite 

monitoring represents a relatively inexpensive method of surveillance, particularly in remote or 

sparsely populated areas. Remote sensors can provide daily (sometimes twice-daily) detection 

and monitoring of wildfires. Satellites also have the ability to identify smoke plumes, which can 

indicate the location of a fire.    

However, thick smoke or even cloud cover can obscure a fire causing them to go 

undetected in remote regions (Yao et al., 2013). Even twice daily monitoring means a fire may 

have been burning for several hours before being captured in a satellite image and analyzed by 

an algorithm. This information is limited further by satellites like the Cloud-Aerosol Lidar and 

Infrared Pathfinder Satellite Observation (CALIPSO), which follow a narrow grid resulting in a 

16-day cycle (Yao, Raffuse, et al., 2018). Finally, the actual size of the fires cannot be 

determined since satellites like CALIPSO capture images in squared kilometers (Yao, Raffuse, et 

al., 2018). As Yao et al., (2018) point out, most remote sensing and analysis platforms aboard 

satellites are also only capable of assessing the entire column of smoke. Whereas, a ground-level 

analysis of pollutants would provide more accurate information about respiratory risks. 

Additionally, many forecasting platforms use deterministic models to forecast the distribution of 

smoke from a fire. While these equations are being used effectively on platforms such as 

BlueSky, they require considerable expertise to operate.  

Machine learning offers advantages over traditional deterministic models (like the one 

used by BlueSky) that can address some of these problems. Machine learning can automate 

manual input of variables by human experts and increase the amount of data included in a model 

by collecting up-to-date information from multiple sources and mining it for applicable data. 

These algorithms also have the ability to accommodate non-linear relationships between input 

and output variables, and factor in instability or unpredictability of the input data unlike 

deterministic models (Yao, Brauer, et al., 2018). This is important, for example because smoke 

plumes are dynamic.  

Yao, et al. (2018) demonstrated these benefits by using a machine learning approach “to 

predict the minimum height of smoke in the atmosphere using variables that reflect fire activity, 

location, and meteorology” (p. 103). The study examined data from the province of B.C., which 

has experienced several record-breaking fire seasons over the last decade. Data were collected 

from April through September (i.e. wildfire season) for the years 2006 through 2015. The study 
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aimed to improve the prediction of ground-level concentrations of smoke emissions to facilitate 

assessment of public health risks.  

The machine learning model generated by the authors was able to improve predictions of 

ground-level emissions by incorporating near real-time, empirical variables about fire activity, 

geography, and meteorology. Meteorological data included wind variables and incorporated 

information about the month and time of day. Fire activity consisted of data on the intensity and 

location of a fire. While geographic variables included information on terrain, land use, and 

elevation.  

In order to train and test the accuracy of the model, the study covered a period of 10 years 

from 2006 to 2015. This means retrospective data were used for the meteorological and fire-

related variables. However, as the authors point out, weather forecasts are widely available and 

could be incorporated, and the retrospective fire data could be replaced with NASA’s Fire 

Information for Resource Management System (FIRMS), which provides current measures of 

fire intensity. 

  When tested, the model explained 82 percent of ground-level emission observations by 

CALIPSO. The model was particularly adept at identifying smoke above a threshold not relevant 

to public health. The authors suggest the model could be operationalized, using near real-time 

data, to increase the accuracy and relevance of emissions predictions.   

Only three studies examining the public health effects of wildfire smoke were found outside 

Canada. Mazzoni et al., (2007), aimed to estimate the vertical height of smoke plumes, while 

Zou et al., (2019) combined satellite data with a vulnerability model. Taking a more specific look 

at the link to public health, Reid et al., (2019) compared surface area concentrations of 𝑃𝑀2.5 and 

𝑂3 with daily counts of hospitalizations and visits to emergency departments for respiratory 

illnesses. The Mazzoni et al., (2007) and Zou et al., (2019) studies used MODIS (MODerate-

resolution Imaging Sectroradiometer)5 data from the Terra and Aqua satellites, focused on 𝑃𝑀2.5 

pollution, and specified that vertical plume height was the critical variable for estimating the 

public health impacts of smoke emissions. Zou et al., (2019) used a random forest model like 

Yao et al. (2018), while Mazzoni et al., (2007) used support sector machine, a machine learning 

                                                 

5 The MODIS remote sensing platform with a 1km resolution classifies each image taken as fire, cloud, water, or 

land. For more information see the Mazzonie et al., 2007 reference. 
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approach used to categorize or classify data. In this case, machine learning was used to classify 

pixels in satellite images representing one square kilometer as containing (or not) smoke plume. 

A few other differences included the concentrations of 𝑂3 in the Reid et al., (2019) study, data on 

the vertical distribution of aerosols from remote sensors aboard the International Space Station in 

the Zou et al., (2019) study, and the use of multiple ground-based sensors in the Reid et al. 

(2019) study. Overall, there were more similarities related to types and sources of data, and 

methods of analysis, lending further credibility to the Yao et la. (2018) study.  

2.2.8 Wildfires – Machine Learning Infrastructure. Regarding the infrastructure 

necessary for monitoring and forecasting wildfire emissions, Yao et al. (2018), presented a 

template. The authors stated, “we were interested in developing an empirical model that could be 

operationalized in near real-time with readily available data” (p. 101). Therefore, data for each of 

the relevant variables was documented and where retrospective data were used, the authors 

proposed a near real-time alternative. Table 3 lists the category of variables (e.g. meteorological; 

fire activity) and their sources, as well as near real-time alternatives for those sources.  

The authors used a random forests algorithm, which is one of the most commonly 

employed machine learning algorithms. Random forest is an ensemble of regression trees 

capable of accommodating non-linear relationships between input and output variables while 

allowing for complex interrelationships among the input data6. In other words, random forests 

can accept the volume and variety of big data and run an analysis even when the relationship 

between input and output variables is not well understood (Kühnlein, Appelhans, Thies, & 

Nauss, 2014).  

A detailed explanation of the algorithm is documented in the article including how each 

variable was defined and assessed for value. Further details about the algorithm are also 

available in companion articles the authors wrote while conducting related research (Z Liu et al., 

2005; Zhaoyan Liu et al., 2009; Omar et al., 2009; Vaughan et al., 2009; Vaughan, Winker, & 

Powell, 2005). This process ensures the most accurate model with the least number of variables.  

                                                 

6 “Data cleaning and analysis was conducted in R Statistical Computing Environment (R Core Team, Vienna, 

Austria)” The data were fitted with the random forests algorithm, an ensemble of regression trees, each of which 

was constructed with a random subset of observations and a random subset of predictive variables. This machine 

learning approach can provide accurate prediction while being robust against overfitting, accommodating non-linear 

relationships between the dependent and independent variables, and accounting for complex interactions between 

the independent variables.” (Breiman, 2001) 
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As noted in the Human Resource Requirements section below, being able to monitor and 

forecast the public health effects of climate change requires specialized knowledge in at least two 

of the three topic areas. However, the Yao et al. (2018) detailed documentation of the process, 

makes it more likely that someone with the specific knowledge and skills could replicate the 

method and expand it beyond British Columbia. 

Table 4. Variables and Sources of Data – Wildfire Emissions 

 

2.3 Severe Storms.  

ECCC identifies severe storms, including hurricanes, floods, and wildfires as an ever-

increasing threat of climate change.  

2.3.1 Floods – potential of Machine Learning. Floods are reliant on precipitation which 

is notoriously difficult to forecast (Cao, 2018; Holmstrom, Liu, & Vo, 2016). Even small 

changes in any one of the numerous phases of the hydrological cycle can dramatically alter a 

forecast (Slingo, 2011). Furthermore, variables such as soil temperature, snow melt, runoff, and 

the amount of impermeable land are also responsible for flooding. According to a literature 

review documenting the use of machine learning in flood prediction, the practice only began 

gaining popularity in the last decade (since 2008) (Mosavi, Ozturk, & Chau, 2018). This review 

found ANNs were the most frequently used method with researchers citing their ability to 

construct fairly accurate models despite the non-linear relationship between rainfall and flooding. 

The authors also found researchers were beginning to experiment with hybrid machine learning 

methods, often by blending two methods. This was done to further improve accuracy, 

Data Source Near Real-Time 

Alternative 

Satellite Imagery:  

 Vertical distribution of 

 smoke in the atmosphere 

CALIPSO Satellite - NASA  

Satellite Imagery:  

 Fire Activity (hot spot 

 data and intensity) 

MODIS - NASA FIRMS -NASA 

Meteorological 

 Temperature 

 Wind speed and dire 

MODIS - NASA 

MERRA - NASA 

 

Environment Canada  

Geographic Location:  U.S. Geological Survey Earth 

Resources Observation and 

Science (EROS) Center GTOPO30   
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generalizability, prediction lead-time, and decrease costs. Ultimately the authors concluded, the 

use of machine learning in “flood prediction is quite young and in the early stage of 

advancement” (Mosavi et al., 2018, p. 27). 

 One study, conducted in Canada, examined the ability of a machine learning model to 

forecast flooding from the Englishman river on Vancouver Island, B.C. The authors used an 

ensemble of ANNs because this method was viewed as inexpensive, relatively easy to 

development and use, robust to variations in the hydrological cycle and accurate. Although the 

system under-forecast peak flows, overall it provided a good daily assessment of the threat of 

flooding from the river. One caveat the authors add, “there is no single “best” [hydrologic] 

model” (Fleming, Bourdin, Campbell, Stull, & Gardner, 2015, p. 504). This is due to the 

variability in the hydrologic cycle which is affected by things like topography and bodies of 

water. In this case, the “Pacific Ocean Void” was a confounding factor - so called due to a lack 

of satellites and ocean-level weather monitors (e.g. weather buoys).  

2.3.2 Hurricanes. Hurricanes and hurricane force tropical storms only make landfall in 

Canada about once every three years (Environment and Climate Change Canada, 2012). Further, 

the cool waters off Canadian coasts drain the energy from these storms, so, “by the time that 

these hurricanes do impact Canada it’s mostly a huge rainstorm and not much of a windstorm”, 

according to meteorologist at the University of Toronto, Athena Masson (Rocha, 2017). 

However, as the climate warms these storms are expected to intensify and become more 

frequent. Therefore, a brief discussion will be presented here on the use of machine learning to 

predict their track and intensity.  

Hurricanes – Potential of Machine Learning. Like floods, the use of machine learning 

in this field is new. The database search initially produced 33 articles. Of the 33, 14 were 

relevant and met the criteria for review. Eight of these were conference papers. In addition, the 

oldest article among the results was published in 2013. Most of the articles focused on how 

machine learning methods could be used to forecast the track or intensity of the hurricane and 

resultant precipitation. Possibly because the technology is so new in this area of research, 

multiple studies compared the predictive power (either to forecast intensity, wind speed, or 

precipitation) of machine learning methods with traditional numerical models.  

One study found using publicly accessible data, employed support vector regression 

(SVR) to predict the intensity of a hurricane (defined by maximum sustained wind speed) based 
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on infrared satellite images of the hurricane (Asif, Dawood, Jan, Khurshid, & DeMaria, 2018). 

The infrared images are able to capture the size and structure of the core of the hurricane, which 

is a reliable indicator of intensity, due to the color difference between the cool (blue) core and 

warmer (red) outer bands. The model was trained and tested using images of hurricanes from 

multiple satellites for the years 1978 to 2009. The images were stored in HURSAT-B1 – a 

publicly accessible database. The results proved the SVR model could more accurately predict 

the maximum wind speed than physically based models.  

2.4 Food Security 

 “Canada does not worry about its food security” according to The Canada Country Study: 

Climate Impacts and Adaptation (Government of Canada, 1998). Indeed, as of 2017 Canada was 

exporting $56 billion in agricultural products each year (Canadian Agri-Food Trade Alliance, 

2017). While food security might not be a problem nationally, like all the consequences of 

climate change in Canada, those on food security are regional and some places are already 

experiencing an impact.  

 Much of the concern around food security was focused on Canada’s Indigenous 

population, particularly in the Arctic region. Here communities are already reporting an earlier 

breakup of sea ice, less permafrost, and lower river levels with less flow leading to stagnating 

water. Decreased permafrost is a problem because many communities have traditionally stored 

game in sections of permafrost. Therefore, the continuing melts will necessitate adaptation in the 

form of moving to places with access go refrigeration, or changing diets. Early sea ice breakup is 

a problem because it limits remote communities’ access to fishing and hunting grounds as well 

as travel between communities. It can also impede access to foods imported by trucks on 

seasonal roads. This is a serious problem when a survey of Northern Aboriginal communities 

found, 96 percent of adults hunt, fish, or gather natural resources as a means of subsistence 

(Séguin et al., 2008). There have also been reports of people becoming stranded, injured, or 

drowning when caught off guard by earlier breakup of sea ice (Furgal & Seguin, 2006).  

 Aboriginal groups outside the arctic are also expected to be disproportionately affected 

by climate change in relation to food security. For example, groups on the North shore of 

Vancouver Island rely on a diet high in salmon, and shell fish such as clams (Talloni-Álvarez, 

2019). At varying stages of their lifecycle, these marine species need access to the shoreline, 

which is being disrupted by rising sea levels cause by climate change. Also, as noted in Section 
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2.1.3 warming water temperature are also contributing to more frequent toxic algae blooms 

which get into the food supply when they are absorbed by shellfish (Finnis et al., 2017).  

 2.4.1 Food Security – Potential of Machine Learning. While AI and machine learning 

cannot solve all of these problems, a few articles were found using the technology to forecast the 

breakup of river ice in order to anticipate floods which often accompany this event. Although the 

focus was river ice, these studies hint at the suggestion that it may be possible to forecast the 

breakup of sea ice. (If we set aside for a moment the regional variations in the hydrological 

cycle.)  

 Two of these studies took place in Canada (A. W. Beaton, R. Corston, K. Kenny, F., 

2019; Wei, 2018). One study used a stacking ensemble learning framework to identify the 

variables with the highest predictive power of ice breakup dates on the Athabasca River at Fort 

McMurray (Wei, 2018). The authors developed models of river ice breakup dates, specifically, 

Bayesian7 Regulated Back-Propagation Artificial Neural Network (BRANN) and Adaptive 

Neuro Fuzzy Inference System. (However, the BRANN model out-performed the ANFIS, and so 

only the former will be discussed here.) BRANN describes the process of a system making a 

prediction, receiving feedback from incoming data, and then adjusting the conditional 

probabilities of future predictions. Data, consisting of weather-related or river ice variables. was 

collected from Alberta Environment and Parks, which maintains a multiyear database of 

observations of the Athabasca River around Fort McMurray. The authors used 36 years of 

observations. Weather-related variables included minimum, maximum, and average daily 

temperatures, precipitation, and snowpack; river ice variables included water level and flow, and 

ice thickness. Results of the study determined air temperature and river flow are the highest 

predictors of ice breakup.   

 Another study (A. Beaton, Whaley, Corston, & Kenny, 2019), used satellite imagery 

from the MODIS remote sensing platform and Google Earth Engine (GEE) to create a dataset of 

ice breakup dates including beginning, end, and duration for five rivers draining into Hudson or 

James Bay. This region is isolated from larger population centres, therefore when flooding 

occurs the First Nations communities who live in the area must be flown to safety. The authors 

used nearly 20 years of MODIS imagery showing river conditions and historical breakup dates. 

                                                 

7 Bayesian Theorem is the process of adjusting conditional probabilities based on incoming information 
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GEE is a free, publicly accessible, cloud-based platform that has proven effective for analyzing 

remotely sensed data for a variety of applications (e.g. forestry, and agriculture). GEE was 

chosen because it does not require data to be downloaded into the system and allows users to 

quickly adjust algorithms to improve analysis or prediction (A. Beaton et al., 2019). Once the 

dataset was created, it was used to calculate probabilities of the beginning, end, and duration of 

ice breakup. This method was able to forecast breakup dates within -2.0 to 6.7 days of empirical 

data captured by Water Survey of Canada. The authors stress that the dataset can be used along 

with hydrological knowledge, and satellite data for prediction of breakup dates along these 

rivers.    

3 Infrastructure and HR Requirements 

3.1 Data and Computing Infrastructure Requirements 

 This environmental scan found the use of machine learning in research on the public 

health effects of climate change is relatively new. Additionally, because machine learning 

algorithms need ample data to solve problems or answer questions, its use is not widespread 

across all risks. This is likely why the use of machine learning is more advance in wildfire 

emissions forecasting than flood risk. As can be seen in Sections 2.3.3 to 2.3.5 emissions’ 

research benefits from a wealth of data including satellite images of smoke plumes and fire 

hotspots, ground-level air quality monitors, and topographical data such as available fuel and 

water sources. By contrast, as explained in Section 2.3.1, multiple, difficult to monitor variables 

such as soil temperature and precipitation are responsible for making an area vulnerable to 

flooding resulting in a lack of data for use with machine learning algorithms.  

 However, some commonalities exist. Research in any of the risk areas (see Table 1) 

requires climate and/or weather data. Weather here, refers to current, recent past (i.e. less than 30 

years)8, and forecast data. While research related to the risks of extreme heat requires 

understanding heat thresholds, which necessitates decades of minimum and maximum daily 

temperatures or climate data. Precipitation forecasts were also relevant for research in all four 

risk categories. The link between precipitation and severe storms (such as floods and hurricanes), 

or even smoke emissions seems obvious, but intense precipitation can spread bacteria through 

                                                 

8 Based on the definition of climate provided by NASA in, “NASA – What’s the Difference Between Weather and 

Climate?” (National Aeronautics and Space Administration, 2015) 
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runoff into recreation or drinking water (vector-borne illness). Humidity and wind were also 

common independent variables across most risk-related areas of research.  

 Environment Canada provides seven-day forecasts, in addition to daily, and sometimes 

hourly weather data from all of its 8,771 weather stations. This information is publicly available 

in comma separated value and XML formats allowing it to be uploaded into statistical packages 

such as R and SPSS. Further, some meteorological data, including forecasts and warnings are 

available as RSS feeds allowing computer systems to automatically read and incorporate the 

information into algorithms (Toutant et al., 2011). Topographic data was also necessary for many 

of the studies. This information included variables such as water sources, vegetation, and 

proportion of non-permeable land. In addition to weather data, were population-level variables 

such as population density and mean age; and socio-economic factors such as rural versus urban 

population, literacy rate, percentage of homes with air conditioning, and household income. For 

a list of variables, frequently used in the studies reference here, see Table 4.   
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Table 5. Common Sources and Types of Data - Public Health Risks of Climate Change 

 

Regarding health-related statistics (e.g. hospital admissions, medication dispensations, 

mortality, etc.), these variables were primarily used to establish correlations with climate change-

related weather events. For example, emergency department visits, hospital admissions, and non-

traumatic mortality were examined in relation to heat waves across Canada in order to establish 

varying heat wave thresholds (Gachon et al., 2016). Once the link had been established, and/or 

the threshold determined, the use of real-time health statistics is not necessary for forecasting 

climate change-related weather events or communicating with the public to mitigate the effects.  

Furthermore, appropriate computing infrastructure is required to: 1) collect required data 

from various sources as automatically as possible; 2) link and pre-process all data; 3) train new 

or update existing machine learning models; 4) run the machine learning models on incoming 

data; and 5) display the resulting surveillance and/or predictive information, typically on a visual 

Data Source Study 
Topography   

 Vegetation Index NASA – MODIS remote sending data Infectious Disease, Severe 

Storms, Higher Temperatures, 

Air Quality 

 Elevation US Geological Survey;  

Global Land Cover Facility SRTM 

Severe Storms 

 Land Cover National Land Cover Database - 

USGS 

Infectious Disease, Severe 

Storms, Higher Temperatures, 

Air Quality 

 Soil Temperature   

Weather   

 Temperature (min. max. avg.)  Environment Canada Infectious Disease, Severe 

Storms, Higher Temperatures, 

Air Quality 

 Precipitation Environment Canada Infectious Disease, Severe 

Storms, Higher Temperatures, 

Air Quality 

 Humidity Environment Canada Infectious Disease, Severe 

Storms, Higher Temperatures, 

Air Quality 

 Wind Speed Environment Canada Severe Storms, Higher 

Temperatures, Air Quality 

Census   

 Population Density Statistics Canada Infectious Disease, Severe 

Storms, Higher Temperatures, 

Air Quality 

 GDP per Capita Statistics Canada High Temperatures 

 Urban vs Rural Households Statistics Canada Higher Temperatures, Air 

Quality 

 Proportion of Population 65 Statistics Canada Higher Temperatures, Air 

Quality 
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dashboard. The exact specifications of the computing infrastructure regarding computing power 

and data storage depend on: 1) the volume of the data; 2) the rate at which the data grow; 3) the 

frequency at which the machine learning models are required to generate output; and 4) the 

complexity of the machine learning model architecture. Multiple central processing units (CPUs) 

and graphical processing units (GPUs) are required to enable parallel computing and accelerate 

model training. 

3.2 Human Resource Requirements 

Understanding the public health impacts of climate change and being able to forecast 

adverse events using AI and machine learning requires three areas of specialized knowledge: 

data science, public health, and climate change. In most cases, employment in any one of these 

areas requires an advanced degree, but no degree program lies at the intersection of all three 

specializations. However, many universities offer programs in at least two of these disciplines.  

As the applications for AI and machine learning expand across many disciplines, demand 

is outpacing supply. Advances in AI are growing rapidly, with some researchers predicting more 

developments in the next five years than over the last three decades (Teja, 2019). This demand 

means there is an increased need to train data scientists who can handle big data, as well as 

machine learning engineers capable of understanding and developing machine learning models. 

As a result, Canadian universities have begun investing more heavily in computer science 

programs. The University of Toronto currently ranks in the top 12 universities world-wide for 

computer science and information systems according to QS World and the Shanghai Global 

Ranking system. Two more, the universities of Waterloo and British Columbia make the top 50 

(QS Top Universities, 2018; Shanghai Ranking, 2019). Table 5 lists the top ten universities for 

computer science in Canada as ranked by Maclean’s. Each school offers master’s- and doctorate-

level degrees in computer science. These programs offer a core set of courses in AI and machine 

learning that set students up for careers in a wide array of industries including technology, 

healthcare, banking, and engineering. Many of these university programs offer the ability to 

specialize or minor in a related sciences field, in addition to co-op or internship options. These 

opportunities will broaden the skill set of graduates and make them more competitive as 

companies seek hands-on experience as well as a degree (Alini, 2018).  

Provincial and federal governments are also investing in the fields of computer science 

and artificial intelligence. For example, the Alberta government recently announced the addition 
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of 406 technology-related seats, including computer science programs, to post-secondary 

institutions across the province (Rieger, 2018).  

The federal government is investing in computer science and AI with several high-profile 

commitments in recent years. In 2017, the federal government committed $125 million to the 

Pan-Canadian AI Strategy. Led by the Canadian Institute for Advanced Research, the project 

aims to increase the number of graduates with expertise across the spectrum of AI; to become 

thought leaders around the “economic, ethical, policy and legal implications of advances in 

artificial intelligence”; to maintain a nation-wide collaboration on AI; and to foster stronger 

connections between Canada’s AI research hubs: Toronto, Montreal, and Edmonton (CIFAR, 

2019). Finally, the federal government committed nearly $2 billion, in partnership with private 

industry, to operate “innovation supercluster”. These superclusters are intended to foster 

industry-led research, learning, and development in AI.   

While Canadian universities have increased investment in computer science programs, 

the Canadian Occupational Projection System (COPS) still predicts a deficit in technology 

professions such as computer programmers and data scientists through the year 2026 

(Government of Canada, 2019a). Further, being able to model the public health effects of climate 

change requires expertise in at least one of the other fields. Researchers must know what 

algorithms would best answer the research questions; what data is necessary, where and how to 

access it; and how to process the information. As a brief example, in order to map the spread of 

smoke emissions, among the information Yao et al., (2018) had to know was how time of day 

and season affect temperature, because these variables affect the rise and fall of smoke in the 

atmosphere. Understanding the importance of these variables allowed them to be included in the 

algorithm resulting in a more accurate model of smoke dispersion.   

Currently no university offers a program at the intersection of all three disciplines (i.e. AI 

or machine learning, public health, and climate change). Although all of the top ten Canadian 

computer science universities offer science-related minors, co-op, and internship opportunities, it 

will be nearly impossible to know how many graduates use these options to obtain skills in 

climate change, or public health research as most universities only track the number of graduates 

by faculty. 

Government organizations will also have to compete with private industry for computer 

science graduates who have an average a salary between  $55,000 and $70,000, and up to 
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$100,000 in their first year (Alini, 2018). Therefore, although interest and investment in 

computer science and AI are increasing, challenges will remain in harnessing these skills for use 

in climate change and public health research.  

A list of the top ten U.S. universities for computer science programs is included in a 

separate table (Table 3) along with information about public health programs and any climate 

change activity by the institution. However, a recent (Spicer, Olmstead, & Goodman, 2018) 

report found one-in-four science, technology, engineering, and math graduates “from the 

Universities of Toronto, British Columbia and Waterloo…opted to work outside Canada” after 

graduation (p. 6). The inference of this report being, it is more likely Canadian STEM graduates 

are leaving to work in the U.S. than American STEM graduates are coming to work in Canada9.   

 

  

                                                 

9 A brief search was done, but no indication was found that Canadian technology companies are attracting U.S. 

graduates at a rate that would make attempts at recruitment a viable option at this time.  
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Table 6. Canadian Universities with Top 10 Computer Science Programs 

University Computer Science 

Program: AI and Machine 

Learning courses 

Public Health 

MSc. PhD. 

Climate Change 

Toronto Yes Yes Environment and Health Program – part of the 

School of Public Health 

British 

Columbia 

Yes Yes Institute for Resources, Environment and 

Sustainability; 

Member of PICS – MSc., PhD., and MA 

programs offered 

Waterloo Yes Yes Interdisciplinary Centre on Climate Change 

(master’s program) 

Montreal Yes Yes Unsure 

McGill Yes Yes School of Environment (undergraduate degrees) 

Alberta Yes Yes Transdisciplinary Research network on Climate 

Change, Water Governance, and the Futures of 

Communities 

Simon 

Fraser 

Yes Yes Member of PICS 

McMaster Yes Yes Centre for Climate Change (not a degree 

program) 

Ottawa Yes Yes Office of Sustainability (not a degree program) 

Carleton Yes Yes Carleton Climate Commons Working Group (not 

a degree program) 
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Table 7. U.S. Universities with Top 10 Computer Science Programs 

University Computer Science 

Program: AI and 

Machine Learning 

courses 

Public 

Health 

MSc. PhD. 

Climate Change 

New York Yes Yes Department of Environmental Studies – MSc., 

PhD. programs 

Columbia Yes10 Yes Climate and health Program – Part of the 

Mailman School of Public Health 

Washington Yes Yes Center for Health and Global Environment 

(CHANGE) - One Undergraduate and one 

graduate level course on Climate change and 

health 

California LA Yes Yes Institute of Environmental Sciences – BS, 

PhD. 

Princeton Yes Yes Could not find a degree program  

Harvard Yes Yes Could not find a degree program  

Berkeley Yes Yes Energy, Climate, and Environment – Only a 

research group 

Carnegie 

Mellon 

Yes Yes Center for Engineering and Resilience for 

Climate Adaptation 

Stanford 

University 

Yes Yes Stanford Earth – supports MSc. And PhD 

research 

Massachusetts 

Institute of 

Technology 

Yes Yes Center for Global Change Science – Not a 

degree program 

 

 

 

  

                                                 

10 Could not find a course on AI 
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4 Recommendations 

 In light of the very serious, and current public health consequences of climate change; in 

addition to the shortage of data scientists and experts in machine learning, we make the 

following recommendations.  

4.1 Design, Development, and Implementation of the Pan-Canadian Surveillance System 

 This report has outlined the major public health risks related to climate change, what 

kinds of data are currently collected for surveillance purposes, and how machine learning and AI 

have been utilized in and outside Canada. The first step is to prioritize the public health risks, 

which can be facilitated by data availability and accessibility, since a prerequisite of any machine 

learning based system is an appropriate data set for training and a data pipeline for deployment in 

practice. Some public health risks, such as wild fires, benefit from rich satellite imaging data. 

Many weather and climate variables (e.g., temperature, humidity, precipitation) are also readily 

available. On the contrary, Lyme disease surveillance currently relies on manual reporting where 

electronic data capture is limited and substantial time lags exist.  

Data linkages between climate and/or weather and health data should also be considered. 

Once required data are identified, discussions with the data custodians (e.g., Environment 

Canada, Public Health Agency of Canada) regarding data access should follow if the data are not 

public and Health Canada does not currently have access. If required data are not currently 

collected, investment in data collection infrastructure (e.g., ground-level sensors, computerized 

reporting mechanism) would be inevitable. 

 With respect to machine learning, given the most successful machine learning 

applications to date across diverse disciplines, the most promising areas would apply deep 

learning, particularly convolutional neural networks, to imaging data. Therefore, any application 

that can benefit from satellite images (e.g., wild fires) should be given priority. Machine learning 

also holds promise for analyzing and extracting information from complex, high-dimensional, 

time-varying data. 

 Predictive or classification models via supervised learning seem most relevant for 

surveillance purposes. Unsupervised learning can also be useful in understanding and 

characterizing complex data sets, which can guide supervised learning. Given the passive nature 

of surveillance, it is anticipated that reinforcement learning would be least utilized, as it is 

typically used to identify optimal sequences of actions that lead to the maximum reward, 
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requiring a large number of interactions between the agent (who is taking actions) and 

environment in the training data. 

4.2 Expanding Human Resource Capacity 

The Government of Canada and provincial governments should fund university programs 

at the intersection of all three disciplines of data science, public health, and climate change. As 

displayed in Table 5, a few Canadian universities have begun establishing public health degree 

programs with specializations in climate change or environmental studies. Additionally, all of the 

top 10 universities offer courses in AI and machine learning. Therefore, the federal and 

provincial governments should offer funding to universities that modify their public health 

programs to include courses on AI, machine learning, and big data. For example, the University 

of Toronto has a public health program with a specialization of “Environment and Health” in 

addition to courses (unrelated to the program) on data science, AI, and machine learning. 

Funding is necessary to establish collaboration between departments including interdepartmental 

leaders who can establish appropriate degree criteria. To be effective, the program would need 

several courses on AI and machine learning. Another approach would be to train data scientists 

in public health and/or climate change by adding additional courses or creating a specialization 

track in existing data science, computer science, or AI programs. 

 A second option (either in lieu of or in addition to the one above), is for the governments 

to fund continuing education courses in data science, AI and machine learning with a preference 

for online learning. This option would allow persons with degrees in public health and/or 

environmental studies to augment their expertise. Massive open online course providers 

(MOOCs) such as Coursera and edX also provide courses in data science, machine learning, and 

AI for free. 

 Prior to pursuing any of these recommendations, a market analysis should be conducted 

to assess interest by the universities, availability of qualified instructors, and interest level of 

prospective students.   
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