Technical aspects of ICP monitoring and EVD placement

Ron Levy
Dr. Hader
2009 07 06
Practice parameters

• Procedures carried out in the ICU, U112, and the ER

• Procedures
 – External ventricular drains
 – Placement of ICP and other intracranial monitors
 – Bur holes for subdural hematomas
Determination of urgency

• Based on clinical and imaging assessment in consultation with neurosurgical staff
• Assign a time priority to the patient (i.e. E0, E1, E4, E6, E12, E24…)
• Communicate urgency to Admitting department (ICU or 112 step down)
• If unable to transfer E0-E4 then book emergency OR.
• If delay would result in catastrophic outcome procedure may be performed in the FMC ER
Consent

- Appropriately signed consent should be in patient’s chart prior to initiating the procedure.
- For E1-E6 to be performed by House Staff and Fellows without delay, it is appropriate for consent to be signed by staff Neurosurgeon within a few hours of the procedures.
 - House staff should document in patient’s chart that case and urgency has been discussed with staff.
 - Notify appropriate family members and document in chart.
Performance of bedside procedure

• May be performed independently by PGY-3 or higher Residents assuming that they have obtained adequate supervised experience in the past

• PGY-1 and PGY-2 require direct supervision of more Senior Resident, Fellow, or attending Neurosurgeon

• Surgeon needs to perform a “time out process” before initiating the procedure
 – Verify correct identity of the patient, correct site, and correct side with the bedside nurse or another (assisting) physician before initiating the procedure
Documentation of Bedside Procedure

• A brief OR note should be dictated (#44444, work type #10)
• The OR note must identify the admitting/attending staff Neurosurgeon and house staff. Copies of the OR note must be sent to the staff neurosurgeon and yourself in care of Patti Sullivan, Residency training Program Coordinator
• The OR note must state the diagnosis, the procedure done as well as the date and the approximate time the procedure was carried out.
• The OR note should contain a brief section outlining the clinical indication and a second brief section indicating the procedure performed including the main finding of the procedure.
External ventricular drains
• An External Ventricular Drainage (EVD) is the temporary drainage of CSF from the lateral ventricles to a closed collection system outside the body

• Indications
 – To divert the flow of CSF to treat acute hydrocephalus (e.g. shunt failure, tumor, or hemorrhage)
 – To divert bloodstained CSF (e.g. following neurosurgery, haemorrhage)
 – To divert infected CSF (e.g. shunt infection)
 – To monitor ICP (e.g. usually GCS=<8 and either abnormal CT or normal CT with risk factors)
 – To relieve raised ICP (e.g. Trauma)
• Kocher’s point
 – Places catheter in frontal horn
 – Right side usually used
 – Entry site 2-3 cm from midline which is approximately the mid-pupillary line, 1 cm anterior to the coronal suture
 – Incision oriented in the sagittal plane in case it needs to be incorporated in flap
 – Drill bit or bur hole
 – Trajectory perpendicular to the surface of the skull, aim towards medial canthus of the ipsilateral eye and in the AP plane towards the EAM
 – Advance with stylet until CSF obtained. Usually 4-5 cm (no more than 7 cm). Get CSF at 3-4 cm with ventricular enlargement
• The catheter is tunnelled under the scalp and brought out 3 cm away.
• Use a 3-Ethilon running suture for drain site and 2-Silk purse string for exit site
• Connected to
 – A self-sealing sampling & injection port.
 – An anti reflux drip/collection chamber.
 – A pressure scale mounting panel or a tape measure.
 – A drainage bag.
• An initial assessment of CSF drainage should be made
• Subsequently checks should be made of
 – Amount of drainage
 – Colour of CSF
 – Exit site
 – The position of the EVD
• Position of drain
 – Prescribe a drain height post-operatively
 • Can be left open (10 to 20 cm)
 • Or left closed and intermittently opened to drain a certain amount of CSF an hour or above a critical ICP (open to drain 10 cc q15m when ICP>20)
• Advantages
 – Low cost
 – Allows ICP monitoring and therapeutic CSF drainage
 – Easily recalibrated to reduce drift

• Disadvantages
 – Difficult to insert into tight or displaced ventricles
 – Obstruction may cause inaccurate readings
 • May flush distally ad lib but proximally with 1-2 cc normal saline (no preservative)
 – Labour intensive (transducer must be maintained at fixed reference point, must close when moving patient)
Codman ICP monitors

Thin (1 mm in diameter)
- Monitor placed in parenchyma or fluid space
 - Usually former
- Same location as EVD in bedside procedure
 - Drill bit hole
 - Tunnel guide goes from incision to exit site
- Connect monitor to Codman ICP EXPRESS
 - Detect monitors
 - Zero in normal saline, hit blue ZERO button
 - Record reference number
- Can bend monitor 90 degrees
- Insert to 2.5 cm from outer cortex of skull
- Tunnel 3 cm away and suture incision and purse string
- Connect back to Codman ICP EXPRESS then to nursing monitors
• Advantages
 – Easy to insert
 – Less invasive than and EVD

• Disadvantages
 – Higher cost
 – Only allows ICP monitoring
 – Cannot be recalibrated and subject to drift
Lycox bolts
• 3 Port system
 – PO2
 – Temperature
 – Port for Codman or microdialysis
• Same location as EVD
 – Place 1-2 cm anterior if EVD present
• Smaller incision
 – Big enough for drill bit (comes with set)
• Screw in bolt
• Use trochar to puncture dura
• Insert port system
• Place monitors
 – If placing Codman must use extra cap and predetermine depth
Subdural drains
• Insert where the subdural is located
 – Usually frontal (2 cm lateral to Kochers) or at parietal boss
 – Incorporate incision to a possible flap
 – Insert drain
 • Small dural opening to subdural space doesn’t fill with air
 • Use a primed drain
 • Soft pass
 • Aim where the money is

• Drugs
 – Local anaesthetic with epinephrine
 – Fentanyl 50ug iv
 – Midazolam 2.5 mg iv
• Tunnel like EVD
 – Use purse strings to scalp
• An initial assessment of drainage should be made
 – Color and consistency should be noted
• Maintenance
 – Usually level to floor
 – Initially may drain a lot, so clamp for several hours if drain more than 75 cc then open and level to drain 10 cc per hour
• Imaging
 – CT scan the next day
• Indications
 – Chronic subdurals mass effect causing
 • Focal neurological deficits (e.g. drift)
 • Global neurological deficits (e.g. decreased LOC)
 – Temporizing complex chronic and subacute SDH for possible definitive procedure

• Complications
 – Infections
 – Injury to brain
 – Acute bleeding