Stereotactic principles, stereotactic radiosurgery, & functional

neurosurgery

Zelma Kiss MD PhD FRCSC

✗ Definitions

- Principles of stereotaxy: history, frames, imaging, brain atlases
- Functional neurosurgery principles
- "Frameless" image-guided neurosurgery
- ✓ Psychosurgery
- Principles of stereotactic radiosurgery

Definitions:

- Stereotactic: from Greek meaning "to touch" in "3 dimensions" (termed by the WSSFN at Tokyo meeting in 1973)
- Stereotaxic: from Greek meaning "3-d arrangement", original term (coined by Horsley and Clarke) for animal surgery
- Stereotaxis: applies to both human and animal techniques

Principles of stereotaxy History Frames Imaging Brain atlases

Principles of stereotaxy: History

1873: Zurzov in Russia encephalometer

1906: Horsley & Clarke, 1st primate stereotactic device (Structure and functions of the cerebellum examined by a new method. Brain 31:45-124, 1908)

1918: Aubrey Mussen, a physiologist at MNI built 1st human Stereotactic frame

1920s: Dandy developed ventriculography1931: Moniz developed angiography

Principles of stereotaxy: History

(UK)

1946: Spiegel & Wycis built the 1st human stereoencephalatome (Science 106: 349-50, 1947)
1949: Narabayashi built stereotactic frame in Japan

1949: Leksell built his own system in Sweden, 1st arc-centre frame
1949: Talairach built his own system in France
Many others followed including Riechert (Germany), Guiot (France), Gillingham

Principles of stereotaxy: Types of frames

 Orthogonal -translational
 -translation

Principles of stereotaxy: Modern frames

Radionics: CRW frame
 Elekta: Leksell stereotactic G-frame
 Re-locatable frames: Laitinen

What if you cannot see your target?

Brain atlases

Schaltenbrand & Bailey 1959Schaltenbrand & Wahren, 1977

Brain atlases

// Talairach & Tournaux, 1988

Brain atlases: Integration with MRI

Brain atlases: Are they good enough?

How do you relate atlas to your patient?

- ✓ Linear 1-d deformation based on AC-PC line
- Linear 2-d deformation based on height of thalamus
- ✗ Dynamic warping?

What if your target is 4 x 6 x 6 mm

Brain atlases: Are they good enough?

Brain atlases: Are they good enough?

ZHTKiss 2003

Principles of functional neurosurgery Electrophysiology = "function"

New attempts to marry imaging and function: fMRI, probabalistic atlases, brain warping algorithms

To marry imaging and function

© ZHTKiss 2003

Imaging & atlases: Are not good enough

stereotactic frame placement
 imaging to determine tentative target
 physiological monitoring to confirm correct target
 implant the DBS electrode or make an RF lesion

Microelectrode methods

© ZHTKiss 2006

✗ Definitions

- Principles of stereotaxy: history, frames, imaging, brain atlases
- ✓ Functional neurosurgery principles
- "Frameless" image-guided neurosurgery
- ✓ Psychosurgery
- ✓ Principles of stereotactic radiosurgery

Principles of stereotaxy: "Frameless" systems

 "Image-guided" surgery but all require a "frame"
 Based on principle of triangulation, relationship between fiducials/surface contouring imaged, then wand and star with reflective markers and 2 infrared cameras

Principles of stereotaxy: "Frameless" systems

✗ Definitions

- Principles of stereotaxy: history, frames, imaging, brain atlases
- ✓ Functional neurosurgery principles
- "Frameless" image-guided neurosurgery

✓ Psychosurgery

✓ Principles of stereotactic radiosurgery

Psychosurgery

Prefrontal leukotomy
 Anterior capsulotomy
 Cingulotomy
 Subcaudate tractotomy
 Limbic leukotomy

History

Egas Moniz: Tentatives opératoires dans le traitement de certaines psychoses, 1936

Nobel Prize, 1947: Prefrontal Leucotomy

★ 10,000 operations pre-1949 in USA

Therapeutic alternatives for psychotic patients pre-1936

Restraints
Immersion baths
Insulin coma
Seizure induction

Outcomes of prefrontal lobotomies

- Tooth & Newton (1961)
- **∧** N=10,365
 - ✗ 70% "improvement"
 - ✗ 6% mortality
 - ✗ 1% epilepsy
 - ★ 1.5% marked disinhibition

Freeman & Watts: Trans-orbital Leucotomy "ice-pick procedure"

Societal Disenchantment with Psychosurge

Fannie Farmer ...and other prominent people who were permanently altered by surgery

One Flew Over the Cuckoo's Nest, 1958

Chlorpromazine (1952): Delay & Deniker

First neuroleptic
 First effective treatment for psychiatric disease

"Modern" Psychosurgery

 Refinements in stereotactic technique
 Refractory OCD & Severe Depression remain indications

Gamma Knife Radiation Helmet

Rationale

- ✓ 1936—Initial report on prefrontal lobotomy (Moniz)
- ★ 1937—"A Proposed Mechanism of Emotion (Papez)
- ★ 1952—Limbic system expanded (McLean)
- Limbic system connects somatic & visceral stimuli/responses w/higher cortical function

Anatomical Rationale

Fronto-striato-pallido-thalamic-frontal loop

DSM-IV Criteria for OCD

- Presence of *either* obsessions or compulsions or both
- These cause marked distress, are time consuming (>1 hr/day), significantly interfere with normal routine, occupational or academic functioning, or social relationships
Obsessions....

recurrent & persistent thoughts, impulses, or images, intrusive & inappropriate, causing marked anxiety/distress

Attempts to ignore/suppress such thoughts, impulses, images, or to neutralize with other thought or action

Compulsions...

- repetitive behaviors (e.g., hand washing, ordering, checking) or mental acts (e.g., praying, counting, repeating words silently) patient feels compelled to perform in response to an obsession
- behaviors/mental acts are aimed at preventing/reducing distress or preventing some dreaded situation; behaviors/mental acts are unconnected w/ what they're designed to prevent or are clearly excessive

Quantitative OCD Assessment

Yale-Brown OCD Scale (YBOCS)*
 0-7 Subclinical
 8-15 Mild
 16-23 Moderate
 24-31 Severe
 32-40 Extreme
 Consider surgery
 A scale to rate severity of OCD

Goodman et al, Arch Gen Psychiarty. 1989; 46:1006-1011

Treatment of OCD

✓ Majority of patients respond to behavioral and/or medical therapy:

Clomipramine (SRI) & selective serotonin reuptake inhibitors (SSRIs), e.g. fluoxetine, sertaline

Only small % remain refractory & severely disabled

Criteria for Surgery

✓ Fulfills DSM-IV criteria for OCD
 ✓ Significant suffering: YBOCS ≥ 20
 ✓ Significant reduction in psychosocial functioning
 ✓ Patient himself requests surgery, provides informed consent

✓ Failure of adequate trial of therapy

Adequate Trial of Therapy

 ✓ ≥ 10 wks of maximally tolerated doses of clomipramine & 3-4 SSRIs
 ✓ Behavioral therapy
 ✓ In practice ≥ 5 yrs of intensive psychiatric treatment
 ✓ Series of iv enafranil

Relative Contraindications

Age < 18 yo
Concurrent diagnoses, such as
Substance abuse
Organic brain syndrome
Delusional disorder
Personality disorder
Mental retardation
Lack of social support

Preoperative Evaluation

 Multidisciplinary Case Review Committee
 Neuropsychiatry, Neurosurgery, Clinical Psychology, Hospital Ethics, Social Work
 Anatomical MRI
 Neurocognitive Assessment

✓ fMRI and/or PET—research tools

Current Procedures

- 1. Cingulotomy
- 2. Anterior Capsulotomy
 - 3. Subcaudate Tractotomy
 - 4. Limbic Leucotomy

Cingulotomy

Foltz & White (1962) Target:

> 20 mm posterior to anteriormost tip of frontal horn
> 7 mm lateral to midline

Anterior Cingulotomy

 Also used in treatment of pain & major depression
 Most commonly performed in North America for OCD & depression

Adapted from A. Abosch 2001

Anterior Cingulotomy: Results

✓ Ballantine et al., 1987: ✓ N=198, mean f/u 8.6 y ✓ 62% severe affective d/o improved ★56% OCD improved ✓ Jenike & Baer, 1991: ▶ N=33 with OCD ★ 25-30% significant improved (YBOCS) ✓ Baer et al, 1995: **∧** N=18, 27 m f/u ✓ Prospective, non-blinded ✓Only 28% responders (YBOCS) ✓ No serious adverse effects

Anterior Capsulotor

Lars Leksell (1972)

Target: anterior limb of internal capsu Lesion ~18 mm in length

- 5 mm behind tip of frontal horn, 20 mm lateral or halfway between frontal horn tip and foramen of Munro
- ✓ At level of foramen of Munro[™]
- ✓ At the border between putamen and pallidum

Anterior Capsulotomy: Results

Mindus et al, 1997:
19 OCD pts, 8.4yrs median f/u (Sweden)
47% good outcome
19 transient confusion
1 seizure
1 suicide
2 patients slovenly
Weight gain of 10%

Subcaudate Tractotomy

Knight (1964) Stereotactic yttrium

Interrelationship of thalamus, lentiform nucleus, caudate nucleus and amygdaloid body (schema): left lateral view

Target

ventral to caudate head = substantia innominata (15 mm lat, 10 mm dorsal to planum sphenoidale)

✓ Intra-operative stimulation produced autonomic responses

Subcaudate Tractotomy: Results

- ✓ Goktepe 1975:
 - ✓ 208 pts mean 2.5 yr f/u
 - ★68% depressed pts improved
 - ★ 50% OCD pts improved
 - Schizophrenics, personality disorders, substance abuse patients did poorly
- ✓ Seizures 2.2%
- ✓ Undesirable personality traits 6.7%
- ✓1 death from hypothalamic destruction
- ✓ 3 suicides
- Not usually performed in North America

Adapted from A. Abosch 2001

Limbic Leucotomy

✓ Kelley et al. (London, 1973)
 ✓ ~10 targets within subcaudate + anterior cingulate region
 ✓ SCT → disconnects OFT paths
 ✓ AC → disconnects Papez
 ✓ Not commonly performed in North America

Limbic Leucotomy: Results

✓ Kelley, <u>1973:</u> ✓ N=66, mean f/u 16 m ★ 89% of OCD pts improved ★78% of depressed pts improved ★80% of schizophrenics improved Iethargy, confusion, lack of sphincter control common post-op, but resolves ✓ No post-op seizures

Problems with Literature

 Previously no standardized rating scale for pre- & post-operative assessment
 DSM criteria for diseases have changed some over the years
 No blinding of studies (patients or investigators)

Risks of NOT intervening

 Suicide risk among patients with refractory OCD is high
 Incalculable loss of psychosocial

functioning

Psychosurgery: Conclusions

- ✓ Surgical treatment of refractory OCD can be helpful in ~28% pts, with minimal risks
- ✓ Optimal target unknown
- Surgery is only one aspect of the entire treatment/rehab plan
- Psychosurgery should be performed only at specialized sites

Outline

✗ Definitions

- Principles of stereotaxy: history, frames, imaging, brain atlases
- ✓ Functional neurosurgery principles
- ✓ "Frameless" image-guided neurosurgery
- ✓ Psychosurgery
- Principles of stereotactic radiosurgery

What is SRS

- Leksell performed first stereotactic treatment in 1951 (linear accelerator-based, with cross-fired arcs), developed the Gamma knife in 1968
- Proton-beam radiosurgery started in 1956
- Linac-based radiosurgery established in early 1980s

SRS: Current Indications

Benign Lesions:

- ✗ AVMs
- ✗ Acoustic Neuromas
- ✗ Meningiomas
- ✗ Pituitary adenomas

Malignant Lesions: Metastases Gliomas?

Functional Lesions: Trigeminal neuralgia Epilepsy ? Chronic pain ?

Radiotherapy: Options

Single fraction SRS

- ✓ 1 extremely high dose of radiation
- Ablative ~ surgical excision
- ✗ Most appropriate for
 - ✓ Arterio-venous malformations
 - Benign lesions: acoustic neuromas, pituitary adenomas, meningiomas
 - Functional targets: trigeminal neuralgia, epilepsy, pain

Fractionated stereotactic radiation therapy

- Many small doses of radiation given over many days
- Preferentially spares lateresponding *i.e.* normal tissue resulting in higher therapeutic gain
- Equivalent to true radiation therapy
- Most appropriate for malignant tumors

Radiotherapy: Single treatment SRS

- Fixed immobilization device
 - Ensures maximum precision
- Same day planning performed based on fine cut CT scan +/-MRI scan
- Patient treated same day

The Process: Treatment day

The Process: Treatment day

Radiotherapy: Fractionated treatments

 Relocatable frame
 Planning based on fine-cut CT scan +/-MRI scan

Patient comes for daily treatments over the course of several weeks

Or the target must be huge

Novalis

? Radiation beam shaping with micro-multileaf collimator

Novalis

- ? Micro-multileaf collimator allows IMRS and IMRT
- ? High dose rate (800 cGy/min)
- ? Allows use of fractionation: basic radiobiology principle that improves preservation of normal tissue passing through radiated field (e.g. acoustics, cavernous sinus lesions)
- ? Use outside the head (e.g. spine)
- ? On-line X-ray monitoring of patient movement

Novalis

Case 1

14 yo male with 1 cm recurrence of craniopharyngioma

Pre-SRS Sep 2002

Case 1

14 yo male with craniopharyngioma

Post-SRS Jul 2003

Case 2

37 yo male with AVM rupture, Parinaud's syndrome, hydrocephalus, VP shunt

Case 2

Midbrain AVM SRS Oct 2002

Case 2

Case 2

Midbrain AVM Sep 2004

Challenges: Image distortion

Challenges: Image distortion

Original angiogram

Corrected angiogram

Challenges: Automatic segmentation

Challenges: Body Fixation

