HYDROCEPHALUS I

Cesar A. Serrano-Almeida May 11, 2006

Physiology of CSF Shunt Devices

- Hydrodynamics of shunt systems:
 Defines the flow (Q) of CSF in the shunt
- \circ Q = Δ P / R
- \circ ΔP = Driving pressure
- R = Resistance.
- Most cases of hydrocephalus: Pathologic increase of hydrodynamic Resistance.
- Shunt provides a low-resistance pathway for CSF diversion.

Physiology of CSF Shunt Devices

- \circ R = RT + RV
- \circ RT = 8 η L / π r4 (Poiseuille's law)
- RT remains constant producing a linear pressure V/S flow curve for the tubing.

Physiology of CSF Shunt Devices

- ΔP = IVP + ρġĥ OPV DCP
- IVP = Intraventricular pressure.
- Hydrostatic pressure = density X gravitational constant X vertical height difference between proximal and distal ends.
- OPV = Opening pressure-valve.
- DCP = Distal cavity pressure.

SIPHONING

- Increase in flow when pt moves from the recumbent to the upright position.
- Difference in the height of the ventricular catheter and distal catheter.
- Difference in hydrostatic pressure.
- Does not happen in the normal brain.

SIPHONING

- Effects:
 Low-pressure symptoms.
 Tearing of bridging veins.
 Subdural hematomas.
 Premature closing of cranial sutures Slitventricle syndrome.
- Raising of opening pressure will not prevent it.
- Hydrostatic pressure upright position = 25-50 cm H2O.
- OP low-pressure valve = 1-4 cm H2O
- OP high-pressure valve = 8-10 cm H2O

SHUNT VALVES

- Differential pressure valves:
 Static valves.
 Programmable valves.
- Flow-regulated valves.
- Siphon-resistive (antisiphon) valves
- Gravity-actuated valves.

Differential Pressure Valves

- Goal: Prevent climbing and falling of IVP.
- DPVs are determined by their opening and closing pressure.
- Resistance of the entire shunt systems determines the flow when valve is open.
- Categories:
 Very low < 1 cm H2O.
 Low 1-4 cm H2O.
 Medium 4-8 cm H2O.
 High > 8 cm H2O.

Differential Pressure Valves

- Slit valves:

 Proximal end: Holter-Hausner valve
 Distal end: Codman Unishunt.
 Lowest resistance to flow.
- Diaphragm valves:
 Most common of DPVs
 Deflection of a silicone membrane to allow flow of CSF.
- Programmable valves

Programmable Valves

- Externally adjustable differential pressure valves.
- Pressure may be adjusted without a surgical revision.
- o Expensive.
- Indications:
 Overdrainage or underdrainage.
 Arachnoid cysts.
 NPH.
- Examples: Codman Medos programmable valve Sophy programmable pressure valve.
- Contain magnets:
 Produce artifact on MRI.
 May be reprogrammed by a magnetic field.

Codman Medos Programmable Valve

Codman Medos Programmable Valve

FLOW-REGULATED VALVES

Increase the R when ΔP increases \rightarrow Constant Q.

- \circ ΔP controls the R.
- Pressure-controlled, variable resistance, constant-flow valves.
- Pressure-flow curves: sigmoid shape.
- Reduce siphoning and overdrainage.
- Risk of obstruction: small orifices.
- Orbis Sigma valve.

Low Resistance at High Pressure (safety pressure release)

Antisiphon Devices

- Reduce the overdrainage.
- Diaphragm that reduces the flow of CSF when pressure inside the shunt < atmospheric pressure.
- PS Medical Delta valve.

Valve Design Trials

- MRT of CSF shunt valve design in pediatric hydrocephalus.
- 344 patients.
- 12 North American or European centres.
- Evaluated valves: standard differential pressure valve, Delta valve, and Orbis-Sigma valve.
- Follow-up: 1 year.
- Results: No differences in shunt obstruction, overdrainage, loculations of the cerebral ventricles, and infection.
- Drake JM, Neurosurgery 43:294-305, 1998.

Hydrocephalus in Children

- Definition: Excess of CSF accumulated within the ventricular system with a secondary increase of ICP.
- It is not a disease; results from various conditions affecting fetus, infant, and child.

Normal Dynamics of CSF

- CSF production rate: 0.33 mL/min.
- Choroid plexus production:

 Energy-requiring process.
 Enzime carbonic anhydrase.
 May be blocked by acetazolamide (Diamox®).
 50%-80% of the total CSF.
- By-product of cerebral and white matter metabolism

Normal Dynamics of CSF

Classification

- Dandy's classification: Communicating.
 Noncommunicating.
- Ransohoff's classification: Intraventricular obstructive Extraventricular obstructive.
- Intraventricular: Foramen of Monro, aqueduct of Sylvius, and oulet foramina of the fourth ventricule.
- Extraventricular: Basal cisterns, arachnoid villi, and venous outflow.

Obstruction of One Foramen of Monro

- Unilateral monoventricular hydrocephalus may be congenital or acquired.
- o Congenital:

Rare

Usually missed in infancy.

Rapid increase of head.

P.E.: Contralateral increase of tone

Obstruction of One Foramen of Monro

Acquired

Tumours: Subependymal giant cell astrocytomas (tuberous sclerosis), craniopharyngiomas, opticohypothalamic astrocytomas, choroid plexus papillomas, and germinomas.

Inflammatory processes.

Colloid Cyst and Subependymal Giant Cell Astrocytoma.

Treatment

- Congenital:
 Shunt the affected ventricle ± endoscopic septum pellucidotomy Reconstitution of cortical mantle.
- Biventricular hydrocephalus and III ventricular mass.
 Severely ill pt. → Bilateral shunts.
- Tumour resection as much as possible.

Obstruction of the Aqueduct of Sylvius

o Congenital:

Second most common cause of hydrocephalus diagnosed in utero. Can occur in families – sex linked condition.

o Acquired:

Infectious processes.

Tumours: Tectal plate astrocytoma, pineal region tumours, posterior fossa tumours (medulloblastomas, cerebellar astrocytomas, ependymomas, and choroid plexus tumours).

Treatment

- Prenatal:
 Medical counselling about outcome
 Other abnormalities.
 Variable outcomes: ⅓ vegetative, ⅓
 developmental delays, and ⅓ normal.
 If delivery, when? "point of no return" →
 brain mantle < 1 cm.
- Birth to 1 year: VP shunt.
- Beyond 1 year: Endoscopic third ventriculostomy (ETV) – Success rate 70%

Treatment

- Acquired: EVD Maximal tumour ressecction.
- Shunt malfunction: very rapid deterioration – ventricular catheter. Shunt revision V/S ETV. ETV: Success rate – 80%.

Obstruction of the Outlet Foramina of the Fourth Ventricle.

- Requires obstruction of three foramina.
- MRI: Marked enlargement of IV ventricle + mod. enlargement of lat. Ventricles + syringomielia.
- Most common cause: infection.
- Associated to Chiari I and II malf. Arachnoid scarring + mechanical compression. History of taumatic delivery.
- Most dramatic form: Dandy-Walker malformation

Obstruction of the Outlet Foramina of the Fourth Ventricle.

 Dandy-Walker mal Vermis agenesia
 Failure OF open.

Treatment

- Define if the aqueduct of sylvius is open.
- Stent placed in the aqueduct.

