Basic neurophysiological principles and surgical

<u>DA Houlden, PhD</u> Surgical Neuromonitoring and Research Program

At the end of this presentation you will be able to:

- Describe resting membrane potential, nerve action potential and its propagation
- Describe the methods used for spinal cord monitoring during spinal surgery
- Describe the relationship between intraoperative monitoring changes and functional outcome
- Describe the limitations of intraoperative spinal cord monitoring

Given:

• cell membrane has different permeability to different ions

• active transport leads to unequal distribution of ions across membrane

membrane acts like a capacitor (voltage storage)

Nernst Equation (equilibrium potential)

Describes the potential difference needed to *counteract* the diffusion of an ion along its
[] gradient.

E (m) = 61 log [K]o [K]i

Resting Membrane Potential

• *Polarity inside cell, relative to that outside* (*potential difference*); related to difference in [ion] across membrane (-70 mV in nerve)

$E (rmp) = 61 \log \underline{P[K]o+P[Na]o+P[Cl]i}$ P[K]i+P[Na]i+P[Cl]o

P = permeability

Action Potential

- *Transient reversal of membrane potential* due to temporary change in membrane permeability
- Biphasic current flow: rapid initial inward flow of Na (reversal); longer outward flow of K (repolarization)

Refractory period

• <u>Absolute:</u> *During AP, unable to produce another AP,* due to decrease Na permeability and increase in K permeability after AP

• <u>Relative:</u> *During repolarization, can produce AP*, but threshold is increased

Propagation of AP in myelinated nerve

- <u>Inside cell</u>: current flow toward *inactive* node
- <u>Outside cell</u>: current flow toward *active* node
- Myelin a) increases CV by current jumping and b) decreases energy requirement for AP propagation

FIGURE 2-4. Local current circuits during the propagation of an action potential in a myelinated nerve fiber. The direction of propagation is from left to right, and the arrows indicate the direction of current flow between active and inactive nodes: **A**, nerve fiber at rest; **B**, impulse at node in center; and **C**, impulse at node on right.

Compound Action Potential (CAP)

- Sum of electrical events after a stimulus
- various fibres (with different CV's) have different thresholds for AP, so increasing stim. intensity changes form of CAP
- fibres with longest internode length have lowest threshold

FIGURE 2-5. Compound action potential of a peripheral nerve, showing the relative sizes and time relationships of its components. (Reproduced with permission from W.F. Ganong, *Review of medical physiology*, 7th ed., Los Altos, Calif.:Lange

Group	Fiber diameter (µ)	Conduction velocity (m/sec)	Source of fiber	Electrophysiologic equivalent
Ia	12-22	70-120	Spindle annulo- spiral endings	Αα
Ib	12-22	70-120	Golgi tendon receptors	Αα
II ·	5-12	30-70	Flower-spray spindle endings	A α and β
			Touch and pressure receptors	ir a ana i p
III	2-5	12-30	Pain and tem- perature receptors	Αδ
			Unidentified muscle receptors	
IV	0.5-1	0.5-2	Pain and tem- perature	С
			Unidentified muscle receptors	

IABLE 2-2. Classification of afferent nerve fibers

Conduction Velocity (CV)

Fast conduction velocity related to :

a) *larger fibre diameter*; decreases internal resistance

b) *longer internode distance* = longer to jumpc) *thicker myelin*

which include the motoneuron cell body and its dendritic tree, the axon, and the whole complement of muscle fibers innervated by the motoneuron.

FIGURE 4-2. Needle electrodes used in clinical practice.

Morphological	Electrophysiological Correlates	Clinical Correlates	
Features in the Biopsy		Motor	Sensory
Loss of nerve fibers			
	Amplitudes sensory nerve action	Weakness	2 point discrimination
Larger myelinated	↓ Amplitudes M-potentials ↓ Motor unit recruitment patterns	± Wasting	↓ Vibration
	EMG evidence of denervated muscle fibers and neurogenic MUPs	± Fasciculation	↓ Touch
Smaller myelinated	No changes		
Unmyelinated			↓ Pinprick sensation ↓ Temperature
Demyelination (±	A Maximum sensory and motor sensory conduction velocities Temporal dispersion of		sensation ↓ Tickle appreciation ↓ Tendon reflex
remyelination)	and maximum M- potentials		\downarrow Vibration sense
	± Conduction block	Weakness ± Neurogenic tremor	

TABLE 3.18. Correlation of Nerve Biopsy and Electrophysiological and Clinical Tests

Neuromonitoring is used for....

• Detection of neurological deterioration

- *Identification* of neural structures (direct spinal cord recordings, direct nerve stimulation)
- Prediction of outcome

Risk factors associated with iatrogenic spinal cord injury during spine surgery

- Pre-operative myelopathy
- use of instrumentation
- number of levels of surgery
- level of spinal surgery (higher is worse)

May et al, J Neurosurg, 1996

Other periods of Risk

Before and after intubation (C-spine), and positioning

myelopathy unstable spinal fractures spinal stenosis

3 Neuromonitoring Modalities

• Somatosensory Evoked Potentials (SSEPs)

• Motor Evoked Potentials (MEPs)

• Electromyography (triggered and mechanically evoked EMG)

Median n.: C6-7 cutaneous, C8-T1 muscle

Ulnar n.: C8 cutaneous, C8-T1 muscle

	Potential	Probable Electrogenic Source
Far Field		
G1 Cephalic and	P8-9	Brachial plexus
G ₂ Opposite hand, knee, or foot	P15	Ascending medial lemniscus
Nearer Field		
G ₁ Posterior neck and	P8-9	Brachial plexus
G ₂ Opposite hand	N11	Ascending dorsal column activity
	N13–14	Postsynaptic activity in dorsal horn (C3–T2)
G ₁ Posterior neck and	P8-9	Brachial plexus
G ₂ Cephalic (F _z)	N11	? ascending tract or postsynaptic activity in spinal cord
	N13–14	Postsynaptic activity dorsal in horn (C3–T2)
G ₁ Contralateral scalp (C3/4) and G ₂ Ipsilateral scalp (C3/4)	N15-20	Ascending medial lemniscus Thalamocortical activity

TABLE 4.4. Electrogenic Origins of Various Subcortical Potentials (Median Nerve Stimulation at Wrist)

TABLE 4.5. Electrogenic Origins of Cortical Potentials

Postcentral	N20-22	Earliest activity in postcentral cortex
recordings		or
		thalamocortical
Postcentral recordings	$\{$ N20 to P30	Primary sensory cortical activity
Precentral	{ P22	Precentral cortical activity

INTERNATIONAL (10-20) ELECTRODE PLACEMENT

Tibial n. (ankle): L4-S2 cutaneous, S1-2 muscle

TABLE 10-3Anesthetic Effects on SomatosensoryEvoked Potential

	Amplitude	Latency
Thiopental	Small or no change	Increase
Etomidate	Increase	Increase
Fentanyl	Modest or no decrease	Modest or no increase
Diazepam	Decrease	Increase
Midazolam	Decrease	Increase
Ketamine	Increase	Increase
Propofol	No change	Increase
Nitrous oxide	Decrease	No change
Halothane	Decrease	Increase
Enflurane	Decrease	Increase
Isoflurane	Decrease	Increase

Utility of SSEP

- *Experienced* SSEP monitoring teams had lower incidence of iatrogenic SCI
 - Nuwer MR et al., 1995 (52,263 patients monitored, mainly for correction of spinal deformity
- Useful for alerting surgeons to risky surgical maneuvers
- This has *not* been proven for MEP monitoring but evidence likely to come

IF THERE IS A CHANGE

- Check SSEP neck potential and the second SSEP scalp recording to corroborate
- Check anaesthesia (it should be stable)
- Check BP. If hypotensive then correct
- Do Motor Evoked Potentials (MEPs)

Transcranial Electric (TCES) Motor Evoked Potentials

Repetitive scalp stimulation, muscle recording (bilateral, pure motor test)

Spinal cord recording after transcranial brain stimulation

Threshold stimulus intensity

> Threshold stimulus intensity + 30%

rubrospinał tract medullary reticulospinal tract

Descending waves summate to increase EPSP at spinal motoneuron

lateral vestibulospinal tract-

pontine reticulospinal tractventral corticospinal tractmedial vestibulospinal tract-

lateral corticospinal tract

Base of medulla

ventral

High cervical spinal cord

dorsal

stimulation; temporal summation of EPSPs at spinal motoneuron

Train of 3

of 3Train of 5Muscle recording after TCES

Transcranial Electric Stimulation (TCES)

When anode is on left scalp, MEPs on right side are recruited first

... and vice versa

What is significant MEP change?

- We use > 80% decrease in amplitude (baseline MEP must be > 100µV)
- Others use...

- total loss of MEP (due to complexity, nonlinearity, instability – fade)

- > 100 V stimulus increase in MEP threshold (Calancie et al., 1998)

Anaesthesia

<u>Best:</u> TIVA (Propofol, narcotic)

Acceptable:

Propofol, narcotic ± 0.5 MAC single gas

No neuromuscular blockade

MEP Problems

(scalp stimulation, muscle recording)

Tongue lacerations (27/10,000)
Use soft bite block

 Very low but not negligible association with seizures (5/15,000; ? > spontaneous seizures)

Inform surgeon before stimulation due to patient movement

MEP (problems cont'd) (scalp stimulation, muscle recording)

- Anaesthesia decreases CNS excitability (especially in α motoneuron)
- Normal "fade" of MEP amplitude over time (increase 23V/hr in myelopathy)
- Only ~ 10% of total muscle membrane current is activated

Muscle MEP (TCES) Method Our "starting" stimulation parameters

- Transverse scalp stimulation (C3 C4; less patient neck and trunk movement than Cz Fpz)
- Train of 5 stimuli; 50µsec pulse width; 2 msec interstimulus interval; 300-500V
- Clear supra threshold in all targeted muscles (up to 500V)

Exclusion Criteria for TCES (no good evidence that these matter)

- history of seizures (or proconvulsant medications)
- skull fractures
- intracranial electrodes, clips or shunts
- cardiac pacemakers or other implanted biomedical devices
- cardiac arrhythmias

Clinical Applications for MEP

Spinal cord tumours Spinal deformity and Spinal decompression Aortic aneurysm Brachial plexus repair Posterior fossa surgery Intracranial aneurysm Peri-rolandic brain tumour

Limitations

• SSEP/MEP do not detect single nerve root injury (SSEP/MEP traverse multiple roots)SO

• Do continuous EMG when nerve root is at risk

Mechanically Evoked EMG

Advantages

• Immediate feedback (**auditory** and visual) about motor nerve function.

- Simultaneous monitoring of multiple nerves.
- Unaffected by anaesthetic

EMG monitoring

For cervical spine surgery, select muscles at risk. For example:

For operations at C5 - monitor deltoid

For operations at C6 - monitor biceps

For operations at C7 - monitor anconeus or triceps

Lumbar Spine Surgery

Gunnarsson et al., Spine, 2004

EMG

- Sensitivity 1.0 (no false -'ves)
- Specificity 0.24 (many false +'ves)

**All surgery was below spinal cord, so sensitivity and specificity is for iatrogenic nerve injury

Free Running EMG Pitfalls

- Damaged nerves less responsive to irritation than undamaged ones
- Sharp transection may be silent or a brief burst followed by silence)
- Unclear relationship with neuronal injury
- spontaneous muscle activity may be related to lightening of anaesthetic
- Limits use of neuromuscular blockade

Bipolar Stimulator (insulated except tips) for neural ID

Triggered EMG

10 mS/Div

Reducing false positives and negatives (EMG)

- If unexpected result then use positive control
- choose appropriate muscles

Stimulus Thresholds: ma (range)

Normal nerve: 2.2 (0.2 - 5.7)

Chronically compressed nerve: (6.3 - 20) (McGuire et al, 1995; Holland et al, 1998)

EMG monitoring

<u>Spinal Nerve</u>	<u>Muscle</u>
C5	Deltoid
C6	Biceps
C7	Anconeus, Triceps
C8-T1	Hand intrinsics (T, HT)
L2	Iliapsoas, Vastus Lateralis, Rectus
	Femoris
L3	Vastus Medialis, rectus femoris
L4	Tibialis anterior, Vastus Medialis
L5	Peroneii, tibialis anterior
S1-S2	Gastrocnemius, Soleus
S3-S4	Anal and bladder sphincters

*For thoracic spinal nerves use intercostal m. or abdominal m.(if below T8)

EMG Responses to Pedicle Stimulation

Stimulus Thresholds: ma (range)

Normal pedicle hole: 30.4 (16.5 - 44.3) Normal pedicle screw: 24 (12.1 - 35.9) Misplaced pedicle hole: 3.4 (1 - 6) Misplaced pedicle screw: 3.5 (1 - 6) (McGuire et al, 1995; Holland et al, 1998)

Scoliosis Society SSEP Monitoring Survey, 1995

(Nuwer et al, EEG clin Neurophysiol, 1995)

0.063 false negative

0.98% false positive

92% sensitivity, 98.9% specificity

51,263 procedures

SSEP problems

• Some patients are not monitorable by SSEP

• Some complications go undetected by SSEP
MEP

(scalp stimulation, muscle recording)

- non-invasive
- real time
- more motor specific
- less bulky and less costly than magnetic stimulation

Transient change in plantar foot MEP w/o SSEP change

Neurological Examination

 <u>Pre-op</u>: Fibromyalgia. Progressive weakness in UE's. O/E: No deficits

• <u>MRI:</u> 1.2 x 0.7 cm T3/4 intramedullary lesion (ependymoma)

Post-op. Neurological Examination

 c/o numbness from just below umbilicus down. O/E: Absent vibration sense in LE's, absent R great toe position sense, MRC 4/5 L ankle PF. Normal LT and PP sensation.

TIBIALIS ANTERIOR

Survey on *Combined* Monitoring (ASNM and ACNS) (n =8,763/yr; 6,000 from one center)

Legatt AD. Clin Neurophysiol, 2002

SSEP and MEP unchanged 90.5%
Unchanged SSEP, MEP change 3.5%
SSEP change, MEP unchanged 2.0%
SSEP and MEP change 4.0%

Problems: "Change" not defined, **neurological deficits not described,** all MEP techniques lumped together (13 of 39 centers used brain stim)

Houlden, Burkholder, Schwartz, Rowed, Midha, Fazl, Finkelstein

Hypothesis:

The sensitivity and specificity of combined SSEP/MEP is better than that of SSEP alone in predicting outcome after spinal surgery

<u>Persistent MEP and/or SSEP</u> <u>change</u>

What is significant MEP change

• > 80% decrease in amplitude (baseline MEP must be > $50\mu V$)

 > 100 V stimulus increase in MEP threshold (Calancie et al., 1998)

Results:

193 spinal operations MEP and SSEP recordable in 80%

Reliable MEP, SSEP <u>and pre-</u> & post-op neuro exams (blind to OR findings) in 118

81% (of 118) had pre-existing deficits 36% myelopathy 35% radiculopathy 10% radiculomyelopathy

10 patients had immediate post-op deficits *2 myelopathy* (8 radiculopathy)

Sensitivity and Specificity

- Sensitivity for myelopathy (only 2 patients had persistent MEP and SSEP change)
 SSEP - 1.0 SSEP/MEP - 1.0
- Specificity for myelopathy
 SSEP 0.99 SSEP/MEP 0.97

one patient had progressive spinal cord ischemia that went undetected by SSEP and MEP Transient MEP and/or SSEP change (not explained by anaesthetic or systemic factors)

- 3/118 (2.5%) had transient MEP change (1 had new nerve root injury)
- 2/118 (1.7%) had transient SSEP change

• Surgeon informed in all cases

Unilateral transient significant change, C3-5 laminectomy

Mild transient arm change w/o leg change

False positive and negatives

- SSEP false positive 0.9% (0.98%, Nuwer)
- SSEP/MEP false positive 2.5%

- SSEP false negative 0% (0.063%, Nuwer)
- SSEP/MEP false negative 0%

Sensitivity of SSEP/MEP for radiculopathy

		new deficit	no new deficit	totals	
	+ ve test	1	0	1	
	- Ve	7	110	117	
N • FINEBERG LSTEIN • FRAZIER MAUSER • MEUTIRA MANTI	totals	8	110	118	
Clinical ecision	<i>Sensitivity</i>				

(true +ve / total new deficits) 1/8 = 0.125

WEINSTE

Analysis

Conclusion

• Sensitivity/specificity of MEP/SSEP was similar to that of SSEP (more cases needed)

• SSEP and MEP do not detect nerve root injuries

 Association between MEP monitoring and reduction of iatrogenic spinal cord injury has <u>not</u> been established

• Experience: Familiarity with pitfalls and artifacts? Cogent communication? Trust?

Why do MEP?

• Performing SSEP *and* MEP monitoring is useful for parallel redundancy or when one technique is not possible

 More salutary effects are likely forthcoming (Recent FDA approval for transcranial electric stimulation)

Sensitivity of EMG for radiculopathy

	new deficit	no new deficit	totals
+ ve	6	10	16
test			
- ve	0	37	37
test			
totals	6	47	53

Sensitivity (true +ve / total new deficits) 6/6 = 1.0

WEINSTEIN • FINEBERG ELSTEIN • FRAZIER NEUHAUSER • NEUTRA

> Clinical Decision Analysis

Specificity of EMG for radiculopathy

	new deficit	no new deficit	totals
+ ve	6	10	16
test			
- ve	0	37	37
test			
totals	6	47	53

Clinical Decision Analysis

WEINSTEIN • FINEBERG ELSTEIN • FRAZIER NEUHAUSER • NEUTRA

> Specificity true -ve / total no change 37 / 47 = 0.79

SSEP/MEP is not sensitive to a single root injury (*SSEP/MEP* traverse multiple roots).

EMG is sensitive but not specific for nerve root injury.

Intraoperative Electrophysiological Techniques

- Nerve Conduction Studies (NAPs, MCAPs)
- Somatosensory Evoked Potentials (SSEPs)
- Motor Evoked Potentials (MEPs, MNAPs)
- Electromyography (triggered and mechanically evoked)

Confirms preoperative electrophysiological tests and observations

Goals of Electrophysiological Techniques

- Assess nerve function
 - functional vs. non-functional nerve (SSEPs, NAPs, MNAPs, MCAPs)
 - nerve regeneration (NAPs)
- Protect nerve during manipulation
 mechanically evoked EMG, (SSEPs)
- Nerve identification
 - to guide dissection (triggered EMG, (NAPs))
 - to identify a specific nerve (triggered EMG)

Nerve Action Potential (NAP)

Tripolar Stimulator (Anode - Cathode - Anode)

Conduction Block (Ulnar n.)

1.5 ms/Div

100µV/Div

Complete Erbs Palsy

