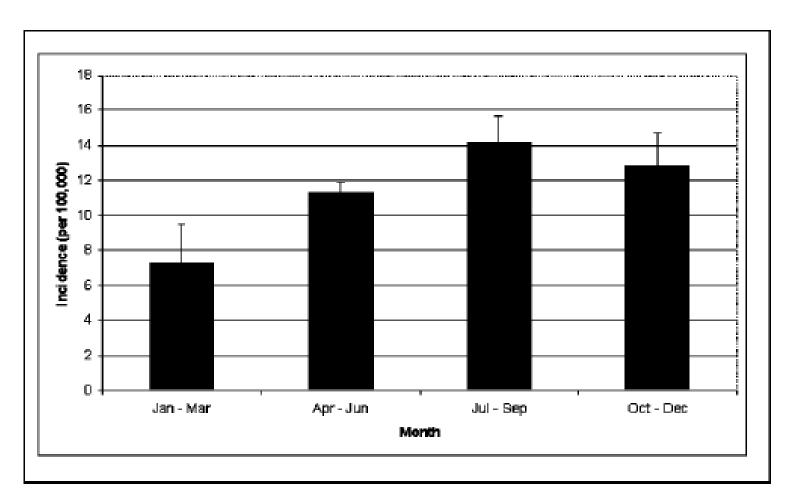
Traumatic Brain Injury

Fady Girgis
Resident Teaching Aug 24, 2009

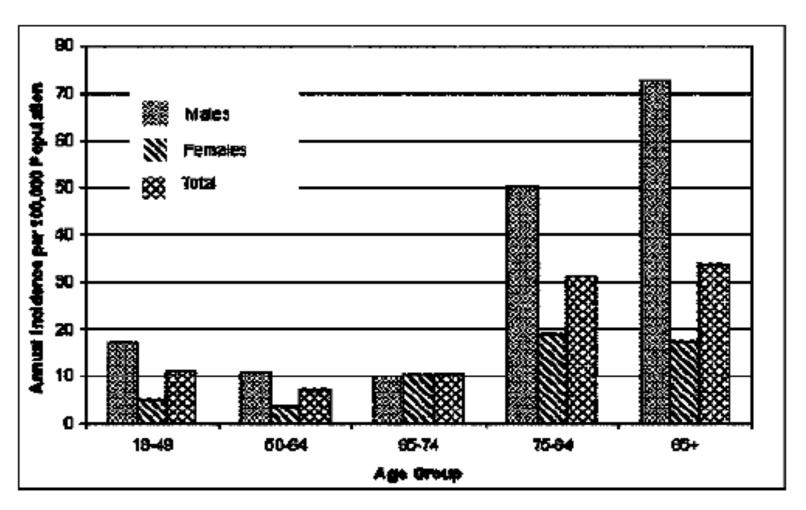
Outline

- Epidemiology
- Classification
- Types
- Physical Exam
- Emergency room management
- IC-HTN and monitoring
- ICU protocols and management for raised ICP
- Outcome

Epidemiology


- TBI is the leading cause of death and disability worldwide
- Incidence of TBI in Canada 15 000/year

Causes of TBI in Calgary


Table 1: Characteristics of severe traumatic brain injury by etiology of injury in the Calgary Health Region (April 1999 to March 2002).

Primary accident etiology	Number of	Mean Age	Intentional	Overall Number
	cases (%)	(±SD) Years	Causality (%)	of Deaths (%)
Motor vehicle crash	113 (47)	39 (±19)	1(1)	48 (42)
Fall or jump	81 (34)	55 (±21)	6 (8)	38 (47)
Struck by object or animal	29 (12)	33 (±8)	21 (54)	7 (24)
Other	19 (8)	38 (±14)	11 (75)	15 (79)
Total	242 (100)	44 (±20)	39 (17)	108 (45)

Quarterly Incidence of TBI in Calgary

Age and Gender in TBI in Calgary

Classification of TBI

Severity	GCS	
Mild	14 – 15	
Moderate	9 - 13	
Severe	3 - 8	

How does trauma cause brain injury?

- Primary impact damage
 - Contusions, lacerations, bone fragmentation,
 DAI, brainstem contusion
- Secondary
 - Intracranial hematomas, edema, hypoxemia, ischemia (especially due to elevated ICP and/or shock)

Delayed deterioration after TBI

- Occurs in 15% of TBI patients. Causes:
- Intracranial hematoma (EDH/SDH/contusion)
- 2. Posttraumatic brain swelling
- 3. Hydrocephalus
- 4. Tension pneumocephalus
- 5. Seizure
- 6. Metabolic abnormalities
- 7. Vascular events (DST, Carotid dissection, fat embolism
- 8. Meningitis
- 9. Shock

Types of TBI - Concussion

1. Concussion:

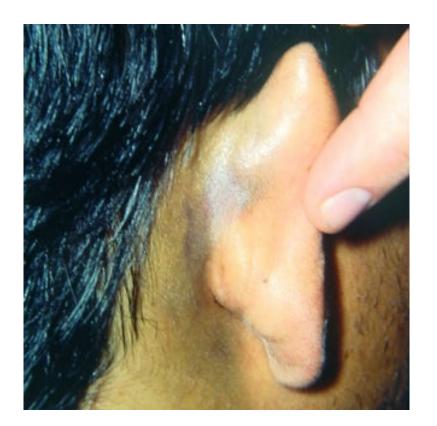
- Alteration of consciousness as a result of closed head injury
 - Grade 1 (mild) posttraumatic amnesia <30min with no LOC
 - Grade 2 (mod) PTA > 30min with LOC < 5min
 - Grade 3 (severe) PTA > 24hrs with LOC > 5min
- Confusion, amnesia, incoordination/ataxia, emotional lability, delayed response, slurred speech

Types of TBI – Concussion (con't)

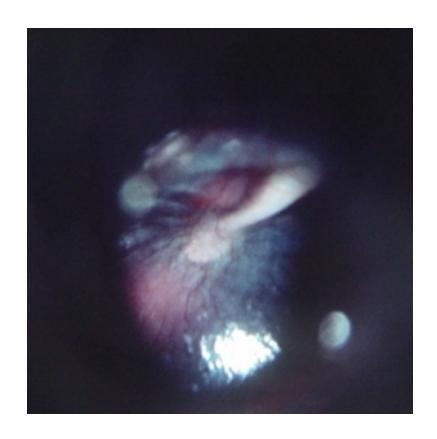
- Return to play following concussion:
 - General rule: a symptomatic player should not return to competition
 - Grade 1: may return if symptoms resolve in 15min
 - Grade 2: return in 1 week if symptoms resolved
 - Grade 3: go to hospital, do not return to sports for at least 2 weeks

Types of TBI - Contusion

- Contusion: Radiologic diagnosis, area of high (hemorrhagic) or low (edema) density on CT
 - Due to direct impact of brain on bony prominences of skull (temporal, frontal, occipital poles)
 - Can be the coup itself, of the contracoup.


Types of TBI - DAI

- 3. Diffuse Axonal Injury: a primary lesion of rotational acceleration/deceleration head injury
 - Lesions typically in white matter can have hemorrhagic foci in corpus callosum and brain stem
 - Microscopic evidence of injury to axons
 - Often causes coma immediately after injury in absence of space occupying lesion on CT (although DAI can also occur with SDH/EDH)


NSx Exam in Brain Trauma

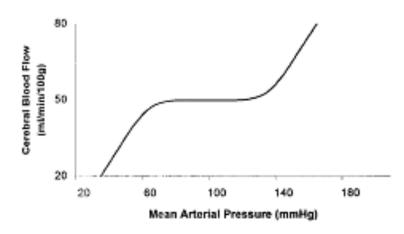
- If pt is awake, do full neuro exam
- If pt is comatose, determine <u>GCS</u> and do...
 - Inspection
 - Racoon eyes, battle sign, CSF rhinorrhea/otorrhea, hemotympanum, facial fractures
 - Reflexes
 - Pupils, corneals, gag

Battle sign

Hemotympanum

TBI Management in ED

1. ABCs


- Intubate if GCS < 8, ventilate to correct hypoxia, infuse fluids to correct hypotension
- Remember hypotension is rarely attributable to head injury
- Ensure the pt is fully recovered from chemical paralysis and/or sedation before performing a neuro exam
- Because hyperventilation can exacerbate cerebral ischemia, it should not be used prophylactically (only use if CT or clinical signs of IC-HTN are present – if used, use only briefly)
- 4. Prophylactic anticonvulsants are only recommended for 1 week post injury (have not been shown to decrease morbidity or mortality)

TBI Management in ED (con't)

- 5. Mannitol (0.5-1.0g/kg bolus, peak effect 20min)
 - Only use if patient is adequately volume-resuscitated
 - Indications:
 - Evidence of IC-HTN (pupils asymmetric or dilated, posturing, deterioration in neuro exam)
 - Evidence of mass effect (e.g. hemiparesis)
 - After CT, if a lesion associated with increased ICP is identified
 - After CT, if pt going to OR
 - To assess "salvageability" pt with no evidence of brainstem function, look for return of brainstem reflexes

Intracranial Pressure (review)

• CPP = MAP - ICP

- Normal CPP for adult is > 50 mmHg
- Normal ICP for adult is < 10 -15 mmHg
- Cerebral autoregulation is a mechanism whereby large changes in systemic BP produce only small changes in CBF
 - Note: Autoregulation is impaired in trauma (i.e. CBF will be dependent on CPP)

Causes of IC-HTN

- Cerebral edema
- 2. Hyperemia normal response to head injury, especially days 1-5
- 3. Traumatically induced masses, either initial or delayed (eg EDH, evolving contusion)
- 4. Hydrocephalus
- 5. Hypoventilation (causes hypercarbia and vasodilation)
- 6. Systemic hypertension
- 7. Venous sinus thrombosis
- 8. Increased muscle tone and valsalva
- 9. Status epilepticus
- Note: Secondary rise in ICP (days 3-10) can be due to delayed hematoma formation/enlargement, cerebral vasospasm, ARDS causing hypoventilation, delayed edema formation, hyponatremia

Indications for ICP Monitoring

- GCS < or equal to 8 (after cardiopulmonary resuscitation) <u>and</u> either:
 - Abnormal admitting CT head
 OR
 - A normal CT, but with 2 or more of:
 - 1. Age > 40
 - 2. SBP < 90 mmHg
 - 3. Decerebrate or decorticate posturing (uni or bilateral)

Methods for ICP Monitoring

1. EVD

- Also allows drainage of CSF
- Can be re-zeroed/calibrated
- 2. Codman (intraparenchymal ICP monitoring)
 - Cannot be re-zeroed
 - Good choice if small ventricles

3. Licox

- 3 ports temperature, O2 sats, and a port for a Codman
- Note: Insertion of an ICP monitor in trauma is contraindicated in coagulopathy

Adjunct to ICP monitoring

- Jugular venous monitoring
 - Jugular venous O2 saturation (SJO2)
 sampled from jugular bulb gives additional data on cerebral perfusion
 - Use intermittent sampling
 - Multiple venous desaturations (<50%) or sustained/profound desaturation episodes are associated with poor outcome

ICU Management of TBI

- Canadian Neurocritical Care Group founded in 1992 by Drs. Draga Jichici and David Zygun
 - An organized approach with special training, experience and protocols for treating various conditions produces improved outcomes and is cost-effective
 - Collaboration of disciplines is optimal

Management of TBI in the ICU

General:

- HOB at 30 degrees
 - Reduces ICP by enhancing venous outflow (but also reduces mean carotid pressure – therefore no net change in CBF)
 - Onset is immediate
- Keep neck straight, avoid tight trach tape
 - Constriction of jugular venous outflow increases ICP
- Enteral nutrition as per protocol
- Stockings for DVT prophylaxis (at least initially)
- Seizure prophylaxis (Dilantin)

Management of TBI in the ICU (con't)

- ICU physiologic goals:
 - CPP 60-70 mmHg (Greenberg recommends > 70)
 - · Use fluids and pressors if needed
 - MAP > 80 mmHg
 - ICP < 20 mm Hg</p>
 - Prevents "plateau waves" from compromising CBF and causing cerebral ischemia
 - PaCO2 35-40 mmHg
 - PaO2 > 80-120 mmHg
 - · Hypoxia may cause further ischemic brain injury
 - Hgb > 90 g/dl
 - Transfusion of pRBC improves brain tissue oxygenation (Zygun '09)
 - Temp 36.0 37.5 (euthermia)
 - · Fever is a potent stimulus to increase CBF, may also increase plateau waves
 - · If Tylenol is not enough, use intravascular cooling
 - Euvolemia (fluid balance positive 0.5 1.0L/24hrs)
 - Avoid hyper or hypoglycemia
 - Hyperglycemia causes brain tissue acidosis (Zygun '04)
 - Low brain tissue pH worsens outcome in TBI (Zygun '04)

Treatment of ICP – ICU protocol

- If ICP > 20 mmHg initial measures
 - Fentanyl 25-150ug/hr, propofol 0-50ug/kg/hr for full sedation
 - Sedation blunts the elevations in ICP that occur with movement/straining/agitation
 - EVD drainage
 - Reduces intracranial volume

Treatment of ICP – ICU protocol (con't)

- If previous not sufficient, then add...
 - Paralyze with pancuronium
 - Same principle as sedation
 - Cool to 35 degrees
 - The effect on outcome of hypothermia is being studied (NABISH)
 - Monitor for drop in cardiac index, decrease plts, pancreatitis
 - Avoid shivering raises ICP
 - Osmol therapy:
 - Hypertonic Saline 5% 2 ml/kg q2h prn for ICP > 20 mm Hg for 10 minutes (serum Na never >160)
 - Alternate: Mannitol 0.25 1g/kg q6h prn
 - Lowers ICP by causing immediate plasma expansion (reduces blood viscosity improved rheology – which increases CBF and O2 delivery), and has a longer osmotic effect to draw edema fluid from cerebral parenchyma
 - Consider mild hyperventilation (paCO2 30-34)
 - Reducing CO2 causes cerebral vasoconstriction, thus reducing CBV and lowering ICP
 - But vasoconstriction also decreases CBF, especially in first 24hrs
 - So, only use for brief periods or as a last line measure if prolonged

Treatment of ICP – ICU protocol (con't)

- If still not sufficient, then add...
 - Cool to 34 degrees
 - Pentobartital coma
 - Lowers ICP but limited by hypotensive side effects
 - Consider decompressive craniectomy
 - Removal of portion of calvaria, and/or large areas of contused brain, and/or temporal or frontal lobectomy
 - Duroplasty is mandatory

Outcome

- Anything from complete recovery to death
- Older age, pre-injury unemployment, pre-injury substance abuse and more disability at rehabilitation discharge are important predictors of long-term disability (Murray '07)
- For people who have sustained a TBI and survived the initial acute phase of care, a considerable increased risk of excess hospitalizations, increased lengths of stay in hospital care and increased rates of physician claims remained across almost every year of follow-up regardless of the level of injury severity (Cameron '08)

References

- Greenberg Handbook of Neurosurgery, 6th Ed.
- Protocol for the Intensive Care Management of Severe Traumatic Brain Injury.
 Calgary Health Region, Foothills Medical Centre. Version 5.5 August 18, 2008
- Zygun DA, Laupland KB, Hader WJ, et al. Severe traumatic brain injury in a large Canadian health region. Can J Neurol Sci 2005; 32:87-92.
- Murray GD, et al. Multivariable prognostic analysis in traumatic brain injury: results from the IMPACT study. J Neurotrauma. 2007 Feb;24(2):329-37.
- Cameron CM, et al. Ten year outcomes following traumatic brain injury. Brain Inj. 2008; 22(6):437-449)
- Zygun DA et al. The effect of red blood cell transfusion on cerebral oxygenation and metabolism after severe traumatic brain injury. Crit Care Med 2009 Vol. 37, No. 3
- Zygun DA et al. Hyperglycemia and Brain Tissue pH After Traumatic Brain Injury. Neurosurgery 55 (4): Oct 2004
- Gupta AK, Zygun DA et al. Extracellular Brain pH and Outcome Following Severe Traumatic Brain Injury. J of Neurotrauma 21 (6): 2004
- Clifton GL, Zygun DA et al. Multicentre Trial of Early Hypothermia in Severe Brain Injury. J of Neurotrauma 26: Mar 2009
- Zygun et al. Neurocritical Care in Canada: Evolving Streams in a New Discipline. Can. J. Neurol. Sci. 2008; 35: 405-408