

Perry Dhaliwal, PGY-2 Neurosurgery Resident University of Calgary

mors of the Skull

Perry Dhaliwal, PGY-2 Neurosurgery Resident University of Calgary

Outline

- Anatomy of the skull
- Non-neoplastic and Neoplastic lesions of the skull
- Esthesioneuroblastoma
- Chondroma and chondrosarcoma

Anatomy of the Skull

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

NEQPLASMS OF THE SKULL

Approach...

Primary Neoplasms

<u>Benign</u>

Osteoma Hemangioma, lymphangioma Embryonic skull neoplasms Chondroma Giant cell tumors Aneurysmal bone cyst Lipoma

<u>Malignant</u>

Osteogenic sarcoma Fibrosarcoma Chondrosarcoma Chordoma

Approach...

<u>Malignant Disease</u> carcinoma (lung, breast, kidney, thyroid, prostate)

multiple myeloma

lymphoma

Ewings Sarcoma

Neuroblasmtoma

Secondary Neoplasms **Direct Extension**

esthesioneuroblastoma

paraganglioma

meningioma

Approach...

<u>Reactive Proliferative and</u> <u>Preneoplastic Lesions</u>

fibrous dysplasia Paget's disease Langerhans cell histiocytosis hyperostosis frontalis interna sinus pericranii cephalohematoma mucocele leptomeningeal cyst

Benign Primary Neoplasms

Osteoma

- benign slow growing osteoblastic tumor
- common primary skull neoplasm
- more common in females 3:1, any age
- patient may complain of a slow growing painless mass
- may manifest as sinusitis
- common locations:

frontal sinus > ethmoid > maxillary > sphenoid

Osteoma

- may also be found in calvaria and mandible
- multiple osteomas may imply Gardner's syndrome
- in paranasal area, may arise from sinus walls

Osteoma - Histopathology

compact - resembles cortical bone

- cancellous includes compact bone, trabeculae, fat and fibrous tissue
- fibrous mature lamellar bone

Osteoma - Treatment

- depends on size and location
- a small lesion involving outer table may easily be drilled leaving inner table intact
- larger lesions involving inner table may need craniotomy and cranioplasty

- second most common benign neoplasm of skull
- most common at 4th decade of life
- parietal and frontal bones most commonly involved followed by mandible
- some patients may present with headache
- soft tissue of scalp or dura rarely involved
- usually unifocal

- Classification:
 - <u>cavernous</u> slowly enlarging blood filled sinusoidal cells most commonly found at the calvaria
 - <u>capillary</u> multiple tufts of capillaries
 - <u>venous</u> consist of thick walled venous channels

Note - there are no feeding or draining vessels associated with these lesions!

skull x-ray will show lucency and classically a honeycomb appearance

Treatment:

- en bloc removal of tumor
- ? radiation therapy

Giant Cell Tumors

- aka osteoclastomas
- mostly involve long bones, mandible or maxilla
- involvement of skull is rare
- usually occur as painful masses that occur in temporal relation to a trauma
- variable pathology: soft and gelatinous to firm and rubbery...cell of origin unknown
- treatment: radical resection
 - recurrence treated with repeat surgery
 - radiotherapy for inaccessible lesions

Malignant Neoplasms

Osteogenic Sarcoma

- most common primary malignancy of bone HOWEVER skull involvement is rare
- may present as rapidly enlarging mass +/pain...may grown internally or externally
- various histopathologic types, but in general present as nonspecific lytic lesion with permeation/thickening of surrounding bone
- treatment is surgery + radioation + chemotherapy
- may get metastases to lung

Chordoma

- uncommon
- arise from notochordal remnants
- most often found in the sacrococcygeal and clival regions
- 30-40% of chordomas are cranial in location mostly situation in the midline and involving clivus
- found in people ages 20-40yo

Chordoma

 few histologic features of malignancy HOWEVER very aggressive locally

Radiological features:

- poorly enhancing on CT
- punctate
- calcification
- destroys bone
 usually high signal on T2

Chordoma: Treatment

radical surgery

subtotal resection and adjuvant radiotherapy

CHONDROMA & CHONDROSARCOMA

Clinical Features

- Comprise 0.15% of all intracranial tumours, and 6% of skull base tumours
- Mean age at presentation is 37 y.o., M = F
- Arise from persistent islands of embryonal cartilage that occur near the cranial base synchondroses (petrosphenoclival junctional area)
- Often occur in the para-median position

Clinical Features

- Malignant, but slow growing
- Duration of symptoms at presentation 23 to 26 months

*** very difficult to distinguish chondroma from chondrosarcoma preoperatively

Chordoma

- arise at remnants of notochord found only in nucleus pulposus of intervertebral discs or clival bone marrow
- usually arise extradurally at cranial base only invade dura late in course
- rarely metastasize
- regional mass effect is the major issue

Chondrosarcoma

- three histologic subtypes:
 - classic
 - mesenchymal
 - dedifferentiated
- generally occur in paramedian position
- most common place of origin is petrosphenoclival junctional area

Imaging

- CT (enhanced): slightly hyperdense
- MRI: useful to assess relationship to adjacent structures
 - TI images show isodense lesion
 - T2 images brightly hyperintense

Treatment Options

- Goal of treatment = Increase likelihood of recurrence-free survival
- Options include:
 - SURGERY as primary treatment modality

Treatment Options

 Goal of treatment = Increase likelihood of recurrence-free survival

Options include:

 SURGERY as primary treatment modality

followed by...

*radiation therapy
*stereotactic radiosurgery
*proton radiation therapy
*radiation therapy with
heavy charged particles
*chemotherapy

Surgical Approaches

Anterior Approaches

- Extended subfrontal
- Transethmoidal
- Maxillotomy and extended maxillotomy
- Transsphenoidal and extended transsphenoidal
- Le Fort I approach and modifications
- Midface degloving approach
- Transpharyngealtranspalatal
- Anterolateral Approaches

Anterolateral Approaches

 Frontotemporal ± orbital/orbitozygomatic osteotomy, transcavernous
 Subtemporal, transpetrous apex, and transcavernous
 Preauricular subtemporal-infratempora

Lateral and Posterolateral approaches

petrosal approaches
extreme lateral

Surgery - Complications

COMPLICATION	PERCENT
Cerebrospinal fluid leak	27
Surgery required	11
With meningitis	10
New cranial deficits	
VI	21
V	15
VIII	10
Death within 3 months	5

Radiation

- Because piecemeal resection is required for skull based surgery, gross total resection may not result in an oncologically complete resection
- Fractionated conventional external beam radiation is not currently recommended for chondrosarcomas as most of the published results are disappointing

Stereotactic Radiosurgery

TABLE 1. Univariate analysis of prognostic variables for imaging and clinical local control in 29 patients with cranial base chordomas and chondrosarcomas ^a
4-vr freedom from local

Variable	No.	relapse by magnetic resonance imaging		
		%	р	
Sex				
Female	19	75	0.58	
Male	10	50		
Age (yr)				
<50	16	89	0.39	
>50	13	53		
Histology				
Typical chordoma	19	55	0.24	
Chondroid chordoma	6	100		
Chondrosarcoma	4	100		
Tumor volume, cm³				
<10	9	100	0.15	
>10	20	49		
Previous resection				
GTR	6	100	0.19	
< GTR	23	59		
Radiosurgical dose, Gy				
<15	11	51	0.25	
≥ 15	18	73		
EBRT				
Yes	19	57	0.63	
No	10	90		

^a EBRT, external-beam radiation therapy; GTR, gross total resection.

Krishnan et al (2005)

Outcomes

TABLE 7. Long-term outcomes in patients with cranial base chondrosarcomas^a

Authors, yr	No. of patients	Mean age (yr)/sex	Therapy	Recurrence-free survival for primary tumor			Mean follow-up	Tumor-related deaths, no.
				3 yr	5 yr	10 yr	(mo)	
Gay et al., 1995 (9)	14	41/12 M, 2/F	Radical surgery ± adjunctive therapy	85%			32	3 (21%)
Hug et al., 1999 (13)	25	44/16 M, 9/F	Proton beam radiation	87%			33	5 (20%)
Crockard et al., 2001 (7)	17	36/12 M, 5/F	Radical surgery	84%			60	4 (23%)
Present study	47	39/29 M, 18/F	Surgery \pm adjunctive therapy	83%	52%	32%	86	4 (8.5%)

^a M, male; F, female; —, no data available.

Recurrence-free survival according to tumor resection	3 yr	5 yr	10 yr
GTR	92%	78.3%	42.3%
STR + radiotherapy	78%	41%	13.8%
Overall recurrence-free survival			
Average total	83%	52%	32%

^a GTR, gross total resection; STR, subtotal resection.

EST'HESIQNEUROBLAST'ONA

Histopathology

- similar to neuroblastomas of adrenal glands and sympathetic nervous system
- Iobular architecture with sheets of dense neurofibrillary material
- occasional olfactory rosettes or pseudorosettes
- membrane bound neurosecretory granules

Clinical Presentation

- generally a very uncommon tumor type (fewer than 350 reported cases)
- presents with nasal obstruction and epistaxis
- hyposmia present (asymptomatic)
- age at presentation spans 3-78yrs
- no associated geographic, environmental or lifestyle factors

Clinical Presentation

- may get metastasis (17-48% of patients)
- metastasis most commonly found at cervical lymph nodes
- other sites include: liver, mediastinum, adrenal gland, ovary, spleen, parotid, spinal epidural space

Patient Evaluation

- one should involve an otolaryngologist and neuro-ophthalmology
- history/physical
- enhanced CT scan
- MRI if the tumor extends intracranially
- may need metastatic work up

Staging

Modified Kadish Staging of Esthesioneuroblastoma

Stage A	tumor confined to nasal cavity
Stage B	tumor extension to paranasal sinuses
Stage C	tumor beyond nasal cavity/sinuses and involves cribriform plate, base of skull and extends intracranially
Stage D	metastases

Treatment

- mainstay of treatment is SURGERY
- role of radiotherapy and chemotherapy is very controversial
- some local control established with adjuvant therapy alone
- combination of surgery, radiation and chemotherapy seem to provide best results

Radiotheraphy

- role for pre-operative radiotherapy?
 - some support this to reduce tumor bulk
 - reduce cell viability to reduce tumor dissemination during time of surgery
- 20% recurrence at 5yrs with surgery and radiotheraphy vs 50% recurrence with surgery alone

Fibrous Dysplasia

Clinical features

- developmental anomaly of mesenchymal precursors - unknown cause
- affects men and women often before age of 30
- monostotic
- commonly involves sphenoid, frontal, ethmoid and maxillary
- symptoms related to bony expansion causing local swelling, proptosis, visual loss and headache
- may undergo malignant degeneration to osteosarcoma (rare)

Fibrous Dysplasia

- three forms described:
 - pagetoid, sclerotic, cystic
- CT shows ground glass appearance of sclerotic form
- Cystic form seen as inhomogenous texture in expanded bone

...total removal recommended if cranial nerves are involved otherwise cosmetic reasons. Not chemo or radiosensitive...