Alim Mitha Acadamic Half Day Seminar November 15th, 2007 Staff: Dr. Mark Hamilton

 Represent 70% of all childhood tumors in patients <10 years old

 In patients <2 years old, most brain tumors are supratentorial

Age	% Infratentorial
0-6 mos	27%
6-12 mos	53%
12-24 mos	74%
2-16 yrs	42%

Tumor Type ¹	% of Total		
Infratentorial Cerebellar astrocytomas Medulloblastomas Brainstem gliomas Ependymomas	54% 15% 14% 12% 9%		
Supratentorial	46%		

¹Section of Pediatric Neurosurgery of the AANS, Pediatric Neurosurgery,

1st ed. Grune and Stratton, New York, 1982

Medulloblastomas

- 15-30% of pediatric brain tumors
- 30-55% of pediatric posterior fossa tumors
- Commonest primary brain tumor in children < 2 years old
- 80% are diagnosed between 1-10 years of age
- Male predominance 1.3-2.7:1

Cerebellar Pilocytic Astrocytomas

- 10% of pediatric brain tumors
- 25% of pediatric posterior fossa tumors
- Average age at presentation 17 yrs old
- M=F

Ependymomas

- 8% of pediatric brain tumors
- 20% of pediatric posterior fossa tumors
- Present between 3-6 years of age
- 10% spinal, 90% intracranial (60% of these are infratentorial)

Less Common Pediatric Posterior Fossa Tumors

- Hemangioblastoma
- Choroid Plexus Papilloma
- Ganglioglioma
- Dermoid
- Epidermoid
- Atypical teratoid/Rhabdoid
- Sarcoma

Rhabdo

Acoustic Neuroma Fibrosarcoma Meningioma Chordoma Subependymoma Metastases - Neuroblastoma - Embryonal

Presentation

Increased ICP due to Hydrocephalus

- Headache
 - Vomiting
 - Worse in AM (secondary to recumbency and increase
 - In infants: irritability, lethargy, macrocephaly
- Ataxia

 P_aCO_2)

- Gait or Truncal (medulloblastomas/ependymomas)
 - Limb (cerebellar astrocytomas)
- Nystagmus
- Papilledema
- Diplopia

Presentation

•	Medul	lobl	astoma	a
	NOGG		actorn	

- Symptom onset < 6 weeks in 50%
- < 12 weeks in 75%
- **Cerebellar Astrocytoma**
- usually < 2 month history of H/A, vomiting, gait ataxia,
- limb
- clumsiness, and later onset increase in ICP
- Ependymoma
 - up to 3yrs of symptoms
 - longer the symptoms prior to presentation, the more

- Primitive Neuroectodermal Tumor (PNET)
- Commonest malignant brain tumor of childhood
- Arises from the cerebellar vermis
- 1/3 have leptomeningeal spread at diagnosis
- Work-up should involve total spine MRI to exclude drop mets

Genetics

- Loss of heterozygosity of 17p in up to 50% of cases
- p53 gene located here
- Small subset of tumors have a loss of small area of 17p that doesn't include the p53

Syndromic associations:

Gorlin Syndrome

- AKA Nevoid Basal cell Carcinoma Syndrome
- Autosomal dominant
- Chromosome 9q13 (inconsistent)
- Characterized by multiple BCCs, odontogenic keratocysts of the jaws, palmar and plantar dyskeratoses, skeletal anomalies including rib malformations

Syndromic associations:

Turcot Syndrome

- Multiple colonic polyps
- APC involvement
- Risk of developing medulloblastoma is
 - 92x that of general population

Imaging Features:

- Well defined midline cerebellar mass
- Isolated cerebellar hemisphere involvement uncommon
- Calcifications in 20%
- Cystic or necrotic regions in 20-50%
- Intratumoral hemorrhage is rare, but more common than in cerebellar astrocytoma or ependymomas

Imaging Features:

- NECT
 - Hyperdense because of dense cellularity
- ECT
 - Diffuse or patchy enhancement
- T1
 - Hypo to isointense
- T2
 - Can be hypo, hyper, or isointense. Heterogenous secondary to cysts, vessels, and calcifications
 - Hypointensity suggests medulloblastoma, unlikely astro
- Enhanced MRI
 - Uniform or heterogenous enhancement

Imaging

- First described by Bailey and Cushing in 1929
 - Described as a highly cellular tumor in roof of 4th ventricle
 - Thought to arise from the embryonal medulloblast
- In early 1970s, the concept of PNETs intriduced to account for a group of undifferentiated neoplasms
 - Cell of origin still controversial
 - Most accept medulloblastoma as a PNET arising from cerebellum

Histopathology

Desmoplastic variant

Histopathology

• Subtypes:

- Classic
- Desmoplastic
- Large Cell
- Nodular

Adjuvant Therapy

- Post-operative Craniospinal radiation (CSRX)improves survival
 - Incidence of spinal mets is 13% compared with 75% without post-op CSRX
 - Incidence of supratentorial mets also increases without CSRX
 - Typical plan includes 5000 cGy to posterior foss with 4000-4500 cGy to remainder of intracranial compartment and 3000-3500 cGy to the spinal axis
 - Cognitive impairment, growth retardation, and leukoencephalopathy increased significantly if RxTX < 3 years of age

Adjuvant Therapy

- Chemotherapy
 - Benefit of Chemotx following successful GTR and standard CSRX remains uncertain
 - Pediatric Oncology Group study shows improved survival with surgery, radiation, and chemotherapy compared with surgery and radiation alone.
 - Other studies show particular benefit with metastatic disease or locally unresectable tumors
 - May be useful in delaying CSRX in children < 3years old
 - Study shows that post-op chemo with delayed radiation is equivalent to standard post-op radiation

Follow-up and Recurrence

- Mendel et al. suggests f/u MRI Brain every 3 months for 2 years, then every 6 months for 2 years, then each year for 5 years
- Majority recur in the posterior fossa in close proximity to the surgical site
- Mean time to recurrence is 13-15 months
- Local posterior fossa recurrences should be treated surgically
- Focal recurrence may be treated with radiation and diffuse metastatic disease with chemotherapy
- Average life expectancy for children with recurrent medulloblastoma varies, 8-27 months

- Arise from the cerebellar hemisphere
- Occasional isolated vermian lesions
- Typically pilocytic, & well demarcated
- WHO Grade I
- Diffuse subtypes may have infiltrating characteristics
- <10% invade brainstem</p>

Imaging Features:

- Predominantly solid (48%)
- Cystic/Solid combination (41%)
- Predominantly cystic (11%)
- Cyst walls may or may not be neoplastic
 - Thick (>1-2mm) and enhancing cyst walls are more likely to be neoplastic
- Peritumoral edema absent or mild, less mass effect & more often calcified than medulloblastoma or ependymoma of comparable size

Imaging Features:

- NECT
 - Isodense or hypodense
- ECT
 - Heterogenously enhancing
- T1
 - Hyperintense Nodule, Hypointense Cyst
- T2
 - Always hyperintense
- Enhanced MRI
 - Heterogenous enhancement of nodule

Imaging

- Subtypes:
 - Pilocytic (commonest, 70-80%)
 - WHO Grade I
 - Low cell density, Rosenthal fibers, granular bodies
 - Histologically, can show necrosis, vascular proliferation, local invasion, but does not carry a worse prognosis
 - Low-grade, diffuse (5%)
 - Anaplastic
 - WHO Grade III, IV (20%)

Adjuvant Therapy

- Not necessary after GTR
- In certain patients with unresectable, or significant residual tumor, radiation may be useful
- Radiation, however, may increase likelihood that recurrence will be of a higher grade
- Radiosurgery alone not yet compared with surgical resection

Adjuvant Therapy

- Generally chemosensitive (CCNU, cyclophosphamide), but excellent results with GTR precludes need for chemo
- May be useful as adjunctive therapy in pts where radiation should be avoided
- Leptomeningeal dissemination, which occurs rarely with low-grade astrocytomas of cerebellum, treated with whole neuraxis radiation and chemo

Recurrence

- Incidence of recurrence following GTR up to 12%
- May undergo malignant degeneration up to many years later
- Children's Cancer Study Group recommends surveillance MRI brain imaging at 6 months, and 1, 2, 5, 7, and 10 years post-operatively
 - If resection is subtotal, follow-up MRI brain should be obtained at 6 months ten anually for 5 years
- Recurrences should be treated surgically with the goal of GTR
- If GTR not possible, resection with radiation or chemo is appropriate

- 2/3 found infratentorially in children
- 2 common sites of origin within the fourth ventricle
 - Inferior fourth ventricle near obex (commonest)
 - 1/3 of these extend inferiorly through the foramen magnum
 - Lateral fourth ventricle
 - Often with extension through the foarmen of Luschka into the CPA
- Origin from roof of 4th ventricle is rare
- Extension through the foramen is characteristic

Imaging Features:

- Tend to displace rather than invade nearby neural structures
- Multifocal calcifications in 50%
- Signal characteristics are non-specific on MRI
- Tumor extension through the foramen (Luschka or Magendie) is central to the radiographic diagnosis

Imaging Features:

- NECT
 - Isodense
- ECT
 - Heterogenously enhancing
- T1
 - nonspecific
- T2
 - nonspecific
- Enhanced MRI
 - Heterogenous enhancement

Imaging

Imaging

- 4 Subtypes:
 - Cellular
 - Perivascular psuedorosettes > true rosettes
 - Papillary
 - Clear-cell
 - Anaplastic
 - Variable degrees of cellularity, atypia, and necrosis may be present in all subtypes, but the highest quotient of malignant features present in anaplastic

- Historically, histological interpretation varies by institution and individual
- However, histologic class does not seem to affect survival
- Worse outcome has been demonstrated with anaplastic variant, but without statistical significance

Adjuvant Therapy

- GTR is most important predictor of patient outcome
- No randomized trials on post-op radiation
- Since majority of pts have subtotal resection with post-op radiation, this may suggest that radiation is of benefit without regard to degree of resection
- Some advocate no radiation after GTR, with close f/u, and delayed radiation for recurrence

Adjuvant Therapy

- Most believe that local radiation is sufficient
- CSRX for patients with evidence of dissemination or anaplastic histology
- No benefit in a large study with CCNU
- Chemo limited to:
 - Tumor recurrences
 - To delay radiation in young children (cyclophosphamide and vincristine, Peidatric Oncology Group Study)

Recurrence

- Typically recur at or adjacent to the site of tumor resection
- Younger age and short duration of presenting symptoms are risk factors for recurrence
- Median time to recurrence is 22 months
- Recurrences should be treated surgically with the goal of GTR

Prognosis

Medulloblastoma

- 5 year survival > 70%
- 5 year progression free survival > 50%
- Shorter survival in presence of drop mets, < 3 years old, subtotal resection

Cerebellar Astrocytoma

- 5 year survival > 90%
- 10 year survival with GTR 80-90%
- Anaplastic astros have 7% 10 year survival
- Younger age, pilocytic, lack of brainstem involvement are predictors of good outcome

Ependymoma

- 5 year survival 60%
- 10 year survival 45%
- More difficulty achieving GTR reflected in survival rates.

- Comprise 10-20% of pediatric CNS tumors
- 3rd commonest pediatric brain tumor after cerebellar astrocytoma and medulloblastoma
- 77% < 20 years old
- Previously thought of as having a uniformly poor prognosis
- Advances in neuroimaging, in particular, have made it possible to separate this broad category of tumors into prognostically different subgroups

Classification:

- Diffuse
- Focal Intrinsic
- Dorsally and laterally exophytic
- Cervicomedullary
- Tectal

Diffuse Tumors

- Aggressive, highly invasive lesions
- Present with rapidly progressive ataxia, weakness, and multiple, often bilateral, cranial nerve deficits
- Biopsy rarely warranted, since imaging findings are characteristics and would place patients at risk without any benefit
- Best treated with radiotherapy alone, which is largely palliative

Brainstem Gliomas Diffuse Tumors

Imaging Features:

- NECT
 - CT shows enlarged pons
- ECT
 - Variable, sometimes focal (but still irregular), enhancement
- T1
 - Diffusely enlarged pons with no clear borders
- T2
 - Diffuse high intensity signal that extends throughout the entire transverse diameter of the pons
- Enhanced MRI
 - Variable, sometimes focal (but still irregular) enhancement

Brainstem Gliomas Diffuse Tumors

Focal Intrinsic Tumors

- Arise in midbrain, pons, or medulla; commonly medulla
- Most (66%) are low grade astrocytomas
- Characterized by a long natural history
- Focality of these lesions mirrored by presentation
 - Isolated cranial nerve deficits with mild cerebellar or long-tract signs
 - Midbrain: extra-ocular movement dysfunction
 - Pontine: facial pariesis
 - Medulla: swallowing dysfunction
- Surgery is an appropriate option, but still not proven against focused radiotherapy or chemotherapy considering the significant risks of neurological impairment

Brainstem Gliomas Focal Tumors

- Imaging Features:
 - NECT
 - Hypodense
 - ECT
 - Uniformly enhancing, nonenhancing, or cystic with mural nodule
 - T1
 - Hypointense
 - Grow by displacing tissue, creating cuff of normal brainstem tissue on T1 and T2
 - T2
 - Pattern overlaps completely with that on T1
 - Enhanced MRI
 - Uniformly enhancing, nonenhancing, or cystic with mural nodule

Brainstem Gliomas Focal Tumors

Imaging

Dorsally and Laterally Exophytic Tumors

- Present with symptoms similar to other 4th ventricular tumors
 - Obstructive hydrocephalus: H/A, nausea, vomiting, ataxia
 - Months of gradually progressive symptoms
 - Have been diagnosed in kids presenting with intractable vomiting
- Because they fungate dorsally, cranial nerve signs, if present, are often mild
- Rarely present as a CPA mass
- Many of these are pilocytic astrocytomas
- Best treated with surgery and followed by serial imaging
- Only 20-30% of post-resection patients require second surgery, despite a commonly subtotal resection

Brainstem Gliomas Dorsally and Laterally Exophytic Tumors

Imaging Features:

- NECT
 - Hypodense
- ECT
 - Uniformly enhancing
- T1
 - Hypointense
- Enhanced MRI
 - Uniformly enhancing

Osteochondroma Brainstem Gliomas

Dersally and Laterally Exephytic Tumors

Imaging

Cervicomedullary Tumors

- Most (72%) are low grade astrocytomas
- Usually represent cervical cord astrocytomas that extend rostrally into the medulla, rather than the converse
- Majority present with symptoms referable to the spinal cord
 - Long history of neck pain, paresthesias, gradually progressive weakness
 - gradually progressive symptoms
- Epicentre of growth on MRI is in the cervical cord, with the rostral pole of the tumor appearing to push the medulla upward
- Dome of the tumor often extends into the cisterna magna in the region of the obex

Cervicomedullary Tumors

- Imaging Features:
 - NECT
 - Hypodense
 - ECT
 - Uniformly enhancing, or cystic with an enhancing rim or mural nodule
 - T1
 - Hypointense
 - Enhanced MRI
 - Uniformly enhancing, or cystic with an enhancing rim or mural nodule

Tectal Tumors

- Group of particularly benign astrocytomas
- Characteristically produce symptoms of obstructive hydrocephalus
 - H/A, nausea, vomiting
- Pre-MRI era: these patients were assumed to have "idiopathic late-onset aqueductal stenosis"
- Initial ones that were biopsied were found almost uniformly to be low-grade
- Indolent lesions with little or no evidence of clinical or radiographic progression
- Best treated with CSF diversion, including 3rd ventriculostomy
- Little or no role for surgical resection
- Biopsy for lesions that progress

Tectal Tumors

- Imaging Features:
 - NECT
 - Hypodense
 - ECT
 - Usually non-enhancing, may show focal enhancement that slowly fades over time
 - T1
 - Isointense
 - T2
 - Hyperintense lesion, centred on the tectum
 - If bulk of signal extends into tegmentum or caudal diencephalon, likely less indolent lesion
 - Enhanced MRI
 - Usually non-enhancing, may show focal enhancement that slowly fades over time

Tectal Tumors

