

Clinical Pharmacology & Toxicology Pearl of the Week

~ Drug-Induced Edema ~

Drug-induced edema is caused by many drugs & can coincide with or worsen pre-existing peripheral edema

Tissue edema develops due to one or more of the following:

- Increased vascular permeability
- Increased hydrostatic pressure
- Decreased oncotic pressure in the blood vessels

Drugs that directly or indirectly upset the balance between <u>hydrostatic</u> and oncotic pressures (Figure 1) or that alter vascular permeability have the potential to cause tissue edema.

Drug-related changes to hydrostatic pressure occur via \uparrow blood pressure (BP) &/or \uparrow blood volume (BV; either \uparrow total body volume via Na⁺ + H₂O retention or \uparrow blood pooling via vaso/venodilation)

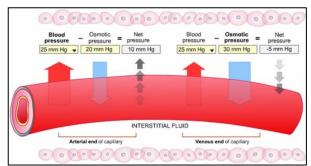


Figure 1: Arterial & Venous Pressure Gradients

Drug-induced alteration to vascular permeability can occur via numerous mechanisms, some of which include:

- Bradykinin (has a very potent effect on blood vessels, leading to ↑↑ vascular permeability)
- Histamine release from mast cells
- Increased nitric oxide release
- Activation of the complement cascade

Table 1: Drugs implicated in causing peripheral edema

Common Culprit Drugs		Edema Mechanism	Pharmacologic/Physiologic Mechanism
Non-DHP CCBs:	amlodipine, nifedipine	\uparrow hydrostatic pressure	Precapillary vasodilation via L-type calcium channels
Neuropathic pain agents:	gabapentin, pregabalin	1 hydrostatic pressure	Precapillary vasodilation via L-type calcium channels
Non-Steroidal Anti- Inflammatories:	buprofen, ketorolac, naproxen	↑ BV & BP	Decreased GFR via inhibition of prostaglandins> activation of renin angiotensin aldosterone system (RAAS) , sodium & water retention
ACE inhibitors:	ramipril, perindopril, enalapril etc.	↑ vascular permeability	Decreased degradation of bradykinin
Dopamine agonists:	pramipexole, ropinirole	Hypothesis is \uparrow BV	? via activation of RAAS system
Insulin		↑вv	Activation of sodium channels in the distal nephron (mineralocorticoid- like activity)
Nitrates		\uparrow venous hydrostatic P	Potent venodilation via Nitric Oxide & cGMP> blood pooling
Steroids:	glucocorticoids, mineralocorticoids, estrogen, testosterone	↑ BV & BP	RAAS activation, mineralocorticoid receptor activation> sodium & water rentention
Antipsychotics:	quetiapine, olanzapine, clozapine	Hypothesis is ?compensatory ↑ BV	many have alpha-1 antagonist properties> orthostasis, activation of RAAS> sodium & water retention

Management involves deciding whether the edema is severe or life-threatening (ie: ACE-inhibitor angioedema), in which case the drug should be discontinued <u>immediately</u>

If it is not severe/life threatening, then depending on the mechanism of edema, options include stopping/switching the medication, using diuretics, RAAS-blocking agents (beta blockers, ACEi or ARBs) & compression stockings to control the edema

The Calgary Clinical Pharmacology physician consultation service is available Mon-Fri, 9am-5pm. The on-call physician is listed in ROCA. Click <u>HERE</u> for clinical issues the CP service can assist with.

The Poison and Drug Information Service (<u>PADIS</u>) is available 24/7 for questions related to poisonings. Please call 1-800-332-1414, and select option 1.