

Clinical Pharmacology & Toxicology Pearl of the Week

Extravasation Injuries Part I

~ Acidic, Alkaline, and Osmotic Vesicants ~

Case:

- ✓ A 76 year old female is brought into the ED after EMS were called for altered mental status.
- ✓ On scene, the patient's blood glucose was noted to be 2.3 mmol/L therefore, an 18G IV was placed in the patient's right antecubital fossa, and she was provided a total of 50 g of dextrose in the form of two 50 mL ampules of D50 (Dextrose 50%) administered 20 minutes ago.
- ✓ On arrival to the ED, the patient is more alert, but complaining of significant pain to her IV site nursing indicates swelling and are concerned for a developing extravasation injury.

Background:

- ✓ Extravasation is leakage or inadvertent administration of a cytotoxic agent (i.e., chemotherapeutic) or vesicant drug/solution (an agent that causes irritation, and classically blistering) into the extravascular space.
- ✓ Initial symptoms include persistent pain, burning, stinging irritation, blanching, erythema at the site; similar to symptoms seen with infiltration of non-vesicants Vesicant exposure, however, can progress to tissue ischemia, thrombophlebitis, necrosis, and ulceration.
- ✓ Extent of injury is divided by Grades 1-4 as outlined below:

Grade	Description	Example Image
1	 Pain at infusion site No erythema or blanching Localized swelling 	The risk of extravasation injuries during iron infusion therapy (osborneslaw.com)
2	 Pain at infusion site Swelling (up to 25% of extremity above or below site) Slight erythema Good pulse distally Brisk cap refill below site <2 sec 	Bolzacchini 2019

3	 - Pain at infusion site - Moderate swelling at site (25-50% of extremity above or below site) - Marked erythema - Blanching - Good pulse distally - Brisk cap refill below site <2 sec - Skin cool to touch 	4 – Vascular Access Anesthesia Key (aneskey.com)
4	 Pain at infusion site Severe swelling (>50% of extremity above or below site) Very marked erythema – extending beyond borders of edema Blanching Decreased or absent distal pulse Delayed cap refill Skin cool to touch Skin breakdown, including blistering or necrosis 	Jöhr 2018

Adapted from Ong 2020; Grading scheme proposed by Heckler 1984

- ✓ Risk factors for inadvertent extravasation include (Ipema 2021; Stefanos 2023):
 - Cannulation technique and line placement (e.g., venous access overlying a joint, provider experience)
 - o Poor peripheral vessel integrity and blood flow (e.g., elderly, prior radiotherapy)
 - o Limited venous and lymphatic drainage (e.g., obstruction or resection from surgery)
 - o Barriers to communicating discomfort / pain
 - o Vesicant properties (pH, osmolality, vasoactivity, cytotoxicity)
 - o Pediatrics: Use of butterfly needles or small catheters which allow blood flow around the catheter
- ✓ Other than extravasation of directly cytotoxic agents and vasopressors: acidic, alkaline, and hyper- and hypo-osmolar agents pose a threat to tissue examples and their mechanisms are outlined below (Stefanos 2023):

Vesicant Class	Specific Agents Reported	Mechanism
Acidic	- Amiodarone	Acidic agents lead to vasoconstriction and
	- Gentamicin	tissue edema, as well as cellular desiccation,
	- Metronidazole	coagulative necrosis, and ulceration.
	- Nicardipine	
	- Vancomycin	
	- Promethazine	
	- Doxycycline	
	- Conivaptan	
	- Pentamidine	
	- Esmolol	
Alkaline	- Acyclovir	Alkaline agents lead to protein dissolution,
	- Ganciclovir	collagen destruction, and breakdown of cell
	- Phenytoin	membranes - leading to liquefactive
	- Phenobarbital	necrosis.
	- Sodium thiopental	

Hyper- & Hypo-osmolar	- Radiocontrast material	In general, large osmotic shifts across cell
	- TPN	membranes cause direct cell damage,
	- Aminophylline	oxidative stress, apoptosis, and
	- Calcium chloride /	inflammation.
	gluconate	Hyperosmolar agents may lead to significant
	- Dextrose (10-50%)	fluid accumulation in the tissues, leading to
	- Mannitol (20%)	compartment syndrome.
	- Hypertonic Saline	
	- Nafcillin	
	- Potassium chloride	
	- Magnesium sulfate	
	- Arginine	
	- Ampicillin	
	- Sodium bicarbonate	
	- Valproic acid	
	- Propylene glycol	
	containing substances	
	(e.g., diazepam,	
	lorazepam, nitroglycerin,	
	digoxin, phenobarbital,	
	phenytoin)	

Table adapted from Stefanos 2023.

Non-pharmacologic Management

- ✓ Prompt recognition and non-pharmacologic supportive care is critical in the management of extravasation of any cytotoxic or vesicant agents **at the first sign or symptom** (Stefanos 2023; Ong 2020; Lawson 2013):
 - **1. STOP the Infusion + DISCONNECT the IV tubing line –** infusion or push should be stopped as soon as the patient describes symptoms <u>or</u> signs of irritation are evident.
 - **2. Attempt Vesicant Aspiration** leave the catheter or needle in place and attempt to aspirate drug and surrounding fluid with 3-5 cc of blood drawn back where possible.
 - **3. Elevate the Affected Limb** to promote lymphatic resorption of the drug, for at least 24-48 hours as able.
 - <u>Caution:</u> Limb elevation in suspected compartment syndrome may further worsen tissue ischemia if compartment syndrome is suspected (pulselessness, pallor, pain out of proportion, elevated CK etc.), seek surgical consultation (Plastic Surgery).
 - **4. Apply WARM or COLD Compress** Currently, there is no head to head comparisons for use of COLD or WARM compresses; for most non-cytotoxic vesicants, WARM compresses are more commonly employed.
 - a. Application: 20-60 minutes 3-4 times / day for 24-72 hours.
 - b. *WARM Compresses favored? -* Preferred for some cytotoxic agents (e.g. vinca alkaloids, epipodophyllotoxins, oxaliplatin), vasopressors, phenytoin, radio-contrast media.
 - i. modifies viscosity, increases local blood flow, and may enhance drug removal.
 - **5. Consider Surgical Consultation** debridement and excision of necrotic tissue may be required if pain persists >1-2 weeks, or if clinical concern for compartment syndrome develops.

Pharmacologic Management - Hyaluronidase

6. To be considered in Acidic, Alkaline, or Osmotic vesicant extravasation in (Stefanos 2023; Ong 2020):

- **a.** Grade 1-2 injuries with no improvement after 30 minutes of non-pharmacologic adjuncts, but ideally before 1-hour post extravasation event.
- **b.** Grade 3-4 injuries alongside non-pharmacologic adjuncts.
- 7. Hyaluronidase works by hydrolyzing hyaluronic acid a key component of the extracellular matrix of soft tissue cells.
 - **a.** Through this action, it can facilitate improved absorption and dispersion of extravasated agents.
- 8. Numerous studies have demonstrated the rapid effect of Hyaluronidase for the symptomatic extravasation of the acidic, alkaline, and osmotic agent effects being seen usually within minutes (Stefanos 2023; Ong 2020; Lawson 2013).
- 9. The exact timing of when to use Hyaluronidase is uncertain (Ong 2020; Laurie 1984)
 - **a.** Extravasation studies using calcium chloride in rabbits demonstrate beneficial effects when Hyaluronidase use <u>was delayed by 1-hour</u>.
 - **b.** Early use <30 minutes, and further delays in use beyond 1-hour, showed no statistical significance for improved outcome however, trended towards benefit.

Dougherty 2011

- **a.** Dilute 0.1 mL of Hyaluronidase 150 U/mL into 0.9 mL of 0.9% NaCl to create a 15 U/mL solution.
 - i. Divide the above into 5 tuberculin syringes of 0.2 mL each.
 - ii. Inject intradermally at 5 points around the periphery of the extravasation site.
- **b.** Repeat dosing may be done q30-60 minutes up to 150 Units.
 - i. Total doses of 450 Units have been used without adverse effect (Ong 2020).
- 11. Possible adverse effects of Hyaluronidase infiltration include (Jung 2020):
 - a. Local irritation / pruritus
 - **b.** Allergic reactions (Type I hypersensitivities)
 - i. Reported as low as 0.05% and 0.69%
 - **c.** Delayed hypersensitivity reactions (Type IV)

Case Resolution:

✓ You institute the above recommended non-pharmacologic management strategies; however, the patient appears to progress to a Grade 3 injury – she demonstrates no signs of compartment syndrome.

✓ You move to the administration of Hyaluronidase after 1-hour and over the next 2 hours, the patient notes significant improvements in pain, swelling, and erythema.

~ Stay Tuned for Extravasation Injuries Part II: Peripheral Vasopressors ~

The Calgary Clinical Pharmacology physician consultation service is available Mon-Fri, 8am-5pm. The on-call physician is listed in ROCA. Clinical Pharmacology consultations are also available through the Netcare e-referral process and through Calgary Zone Specialist Link. Click HERE for more details.

The Poison and Drug Information Service (PADIS) is available 24/7 for questions related to poisonings. Please call 1-800-332-1414 (AB and NWT) or 1-866-454-1212 (SK).

References / Resources

- Stefanos SS et al. Management of noncytotoxic extravasation injuries: a focused update on medications, treatment strategies, and peripheral administration of vasopressors and hypertonic saline. *Pharmacotherapy*. 2023;43(4):321-37.
- Ong J et al. Recommendations for management of noncytotoxic vesicant extravasations. *J Infus Nurs*. 2020;43(6):319-43.
- Ipema H et al. What are current recommendations for treatment of drug extravasation? *University of Illinois Chicago: Drug Information Group*. Published online February 2021. Link: What are current recommendations for treatment of drug extravasation? | Drug Information Group | University of Illinois Chicago (uic.edu)
- Laurie SW et al. Intravenous extravasation injuries: the effectiveness of hyaluronidase in their treatment. *Ann Plast Surg.* 1984;13(3):191-4.
- Heckler FR. Current thought on extravasation injuries. Clinics Plast Surg. 1989;16:557-63.
- Bolzacchini E et al. First report of pembrolizumab extravasation. Hematol Med Oncol. 2019;5:1-2.
- Jöhr M. Extravasation. In: *Managing Complications in Paediatric Anaesthesia*. Cambridge: Cambridge University Press. 2018:94-96. doi:10.1017/9781316823064.030
- Dougherty L et al. Advanced practice in the management of extravasation. *Cancer Nurs Prac.* 2011;10(5):16-22.
- Lawson AL et al. Identification of highly concentrated dextrose solution (50% dextrose) extravasation and treatment a clinical report. *Am J Emerg Med.* 2013;31:886.e3-e5.
- Jung H. Hyaluronidase: an overview of its properties, applications, and side effects. *Arch Plast Surg.* 2020;47:297-300.