

DTN and endovascular therapy (or getting 30-60-90 off to a good start).

Sept 23, 2016

Tom Jeerakathil BSc, MD, MSc, FRCP(C) Professor Division of Neurology University of Alberta

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship Grant/Research Support Honoraria for 2 ad board meetings Major Stock Shareholder/Equity Royalty Income Ownership/Founder Intellectual Property Rights Other Financial Benefit

Company

CIHR, CSN, HSFC, IAHS, AHS BMS Phizer/ Bayer None None None None None

OBJECTIVES

 To discuss what fast DTN needs for fast endovascular

The neuron...

In a typical large vessel acute ischemic stroke...

1.9 million neurons14 billion synapses12 km of myelinatedfibers

are destroyed each minute... (Saver et al, 2006)

5 min \sim 10 million neurons, 60km of wires

10 min ~ 20 million neurons, 120km of wires

15 min ~ 30 million neurons, 180 km of wires...

Time and outcome

[Lees et al. Lancet 2010; 375: 1695-1703]

Shorter DTN = better outcomes

- Every 15 min drop in DTN associated with a 5% reduction in mortality (OR 0.95; p<0.0001)
- Those with DTN < 60 min have reduced risk of intracranial hemorrhage 4.7% vs 5.6%

Fonarow et al, Circulation 2011, 123:750-758

COMMENTARY

Good is not Good Enough: The Benchmark Stroke Door-to-Needle Time Should be 30 Minutes

Noreen Kamal, Oscar Benavente, Karl Boyle, Brian Buck, Ken Butcher, Leanne K. Casaubon, Robert Côté, Andrew M Demchuk, Yan Deschaintre, Dar Dowlatshahi, Gordon J Gubitz, Gary Hunter, Tom Jeerakathil, Albert Jin, Eddy Lang, Sylvain Lanthier, Patrice Lindsay, Nancy Newcommon, Jennifer Mandzia, Colleen M. Norris, Wes Oczkowski, Céline Odier, Stephen Phillips, Alexandre Y Poppe, Gustavo Saposnik, Daniel Selchen, Ashfaq Shuaib, Frank Silver, Eric E Smith, Grant Stotts, Michael Suddes, Richard H. Swartz, Philip Teal, Tim Watson, Michael D. Hill

doi:10.1017/cjn.2014.41

Can J Neurol Sci. 2014; 41: 694-696

Figure 3. Secondary Efficacy and Safety Outcomes of Endovascular Therapy vs Standard Therapy

	Endovascular Therapy	Standard Therapy		
Source	Events/No.	Events/No.	Odds Ratio (95% CI)	
SYNTHESIS, ²⁶ 2013	76/181	84/181	0.84 (0.55-1.27)	
MR RESCUE, ²⁷ 2013	12/64	11/54	0.90 (0.36-2.25)	
IMS III, ²⁸ 2013	177/415	86/214	1.11 (0.79-1.55)	
MR CLEAN, ²⁹ 2015	76/233	51/267	2.05 (1.36-3.09)	
ESCAPE, ³⁰ 2015	87/164	43/147	2.73 (1.71-4.37)	
EXTEND-IA, ³¹ 2015	25/35	14/35	3.75 (1.38-10.17)	
SWIFT-PRIME, ³² 2015	59/98	33/93	2.75 (1.53-4.94)	
REVASCAT, ³³ 2015	45/103	29/103	1.98 (1.11-3.53)	
Overall	557/1293	351/1094	1.71 (1.18-2.49)	
I ² =75.4%, P<.01				

B Mortality at 90 d

	Endovascular Therapy	Standard Therapy		Favors Endovascular	Favors Standard		
Source	Events/No.	Events/No.	Odds Ratio (95% CI)	Therapy	Therapy	P Value	Weight, %
SYNTHESIS, ²⁶ 2013	26/181	18/181	1.52 (0.80-2.88)			.20	12.5
MR RESCUE, ²⁷ 2013	12/64	13/54	0.73 (0.30-1.76)			.48	7.2
IMS III, ²⁸ 2013	83/434	48/222	0.86 (0.58-1.28)	-	—	.45	25.3
MR CLEAN, ²⁹ 2015	49/233	59/267	0.94 (0.61-1.44)	-	<u> </u>	.77	23.1
ESCAPE, ³⁰ 2015	17/164	28/147	0.49 (0.26-0.94)			.03	12.3
EXTEND-IA, ³¹ 2015	3/35	7/35	0.38 (0.09-1.59)	<		.18	2.9
SWIFT-PRIME, ³² 2015	9/98	12/97	0.72 (0.29-1.79)			.47	6.8
REVASCAT, ³³ 2015	19/103	16/103	1.23 (0.59-2.55)		-	.58	10.1
Overall	218/1312	201/1106	0.87 (0.68-1.12)	<	>	.27	100.0
<i>I</i> ² =17.7%, <i>P</i> =.29				0.1 1	:.0	 10	
				Odds Rat	io (95% CI)		

Metanalysis 2015 JAMA

Treatment details and process times		
Treatment with intravenous alteplase	526 (83%)	569 (87%)
Treatment with intravenous alteplase documented within 180 min	442 (70%)	462 (71%)
Process times (min)		
Onset to randomisation	195·5 (142–260)	196 (142–270)*
Onset to intravenous alteplase	100 (75–133)**	100 (74–140)††
Onset to reperfusion	285 (210–362)	NA

Data are median (IQR), n (%), or mean (SD). NIHSS=National Institutes of Health Stroke Scale. ASPECTS=Alberta Stroke Program Early CT Score. *n=650. †n=631. ‡n=648. §n=620. ¶n=644. ||n=632. **n=598. ††n=618.

Table 1: Baseline characteristics in the pooled data

Hermes Metanalysis 2016 Lancet

The 30-60-90 metric:

- DTN 30 minutes
- Door to groin puncture 30 minutes
- Groin puncture to recanalization 30 minutes

Methods- Quality and Process Improvement – now for IA

- Fishbone Diagrams, swim lane charts
- PDSA cycles
- Time in motion study
- Case reviews every lysis assessment every week!
- Intense involvement of administration, stroke neurology

Methods- Engagement

- Engaging stakeholders
 - Intensive involvement by the ED
 - Diagnostic imaging
- Building relationships
- Education sessions

Process Mapping For EMS and Triage

Fishbone Diagram

Access to endovascular therapy

What factors determine the destination primary or comp stroke centre?

- Hospital system?
- Geography/pro ximity?
- Time (transport and door to treatment)?
- Quality and volume?

Access to endovascular therapy

Good Outcome vs. Cost-effectiveness Analysis

Cost-effectiveness Analysis

Stroke CFM Notes: If this is a HEADS UP call, ensure the caller has the pt ULI, LSN (if known)

TOTAL Score

' In God we trust. All others bring data.'

W. Edwards Deming

' Better has no limit.'

' My message is: get your sh*t together and treat fast.'

Moyank Goyal

personal communication

www.albertahealthservices.ca

Results- Go for the Gold!

Evolution of a Process needs multiple modifications

UNIVERSITY OF

Key factors

- Pre-notification
- Pre-registration / registration as unknown
- Telestroke 'heads up' to neurologist on arrival with patient information
- Active involvement by ED and Neurology
- Triage to CT; 'swarm' at Triage
- tPA in the CT scanner suite (for some)
- Individualized process mapping by site
- Soon Early activation of transport process – Red referral process

Key factors

- Do what's necessary to understand the patient (be safe and accurate)
- Avoid unnecessary delay

SUMMARY

- Fast treatment saves brain, reduces disability and reduces complications
- It takes a systematic approach and buy in from everyone to treat faster
- Our experiences with DTN with help us with EVT

CONCLUSIONS

Conclusion

 30 min DTN is within our grasp! Level of Evidence Level C

Faster treatment can
 Class I, level A
 lead to better outcomes

Faster DTN could lead to

 Class I, level C
 faster endovascular

Thank-you!