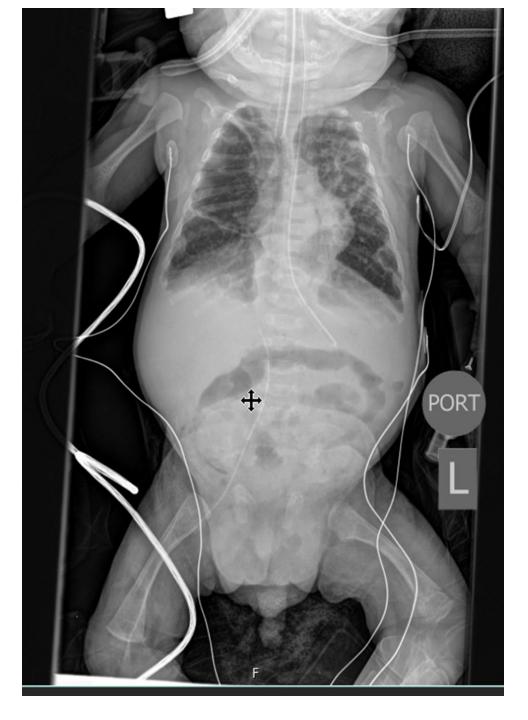


NEONATAL GASTROENTEROLOGY & NUTRITION PROGRAM - CALGARY

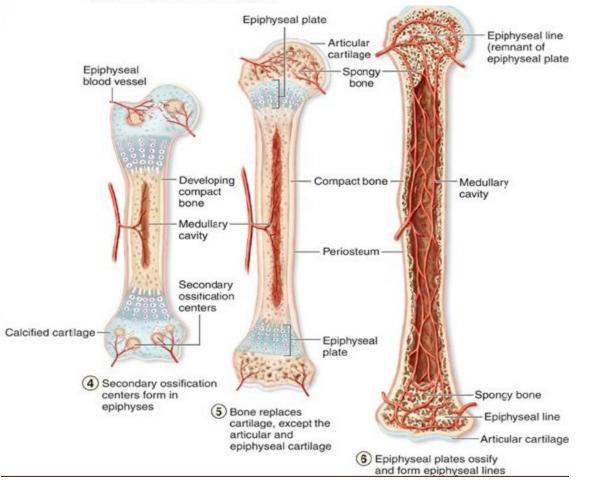
SOCIETY OF NEONATAL GASTROENTEROLOGY NUTRITION & GROWTH


Metabolic Bone Disease of Prematurity

Belal Alshaikh, MD, MSc, FABP, MSCE Department of Pediatrics University of Calgary Society of Neonatal Nutrition Gut & Growth Nov 2022

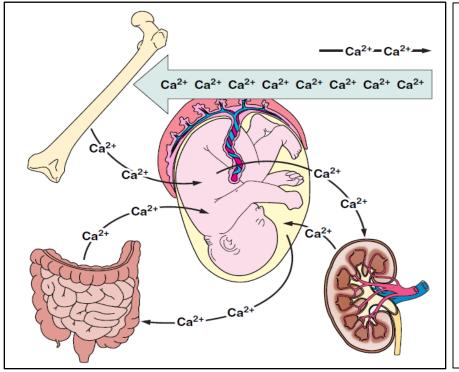
Objectives

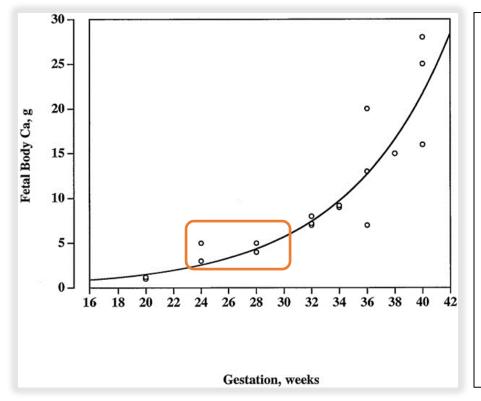
- Review bone accretion during fetal and early postnatal life
- Identify risk factors and screening strategies for metabolic bone disease
- Determine evidence-based interventions to support bone health in preterm infants


- Preterm 24+6 weeks
- DOL: 62 days
- Mededications:
 - DART x 1
 - Caffeine
 - Diuretics (short course)
- Late onset sepsis →
 PICC → X ray

- How do you describe the skeleton?
 - Normal
 - Bone rarefaction
 - Subperiosteal bone formation
 - Metaphyseal alteration
 - Rib fracture
 - Long bone fracture

Bone development in fetal and early postnatal life

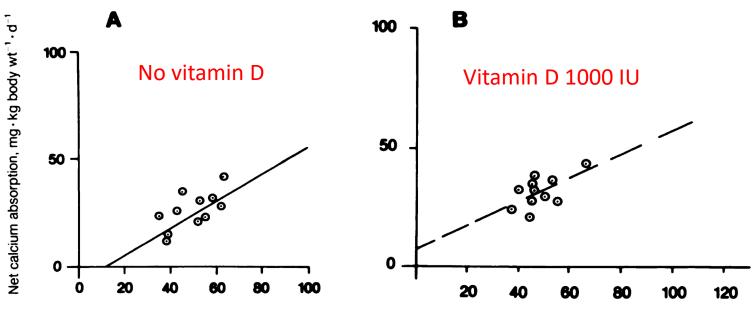



Bone formulation is a 2-phase process:

- Osteoblasts form osteoid (organic bone matrix)
- Incorporation of minerals (Ca and Phos) into newly formed osteoid

Circulation of mineral within the fetalplacental unit

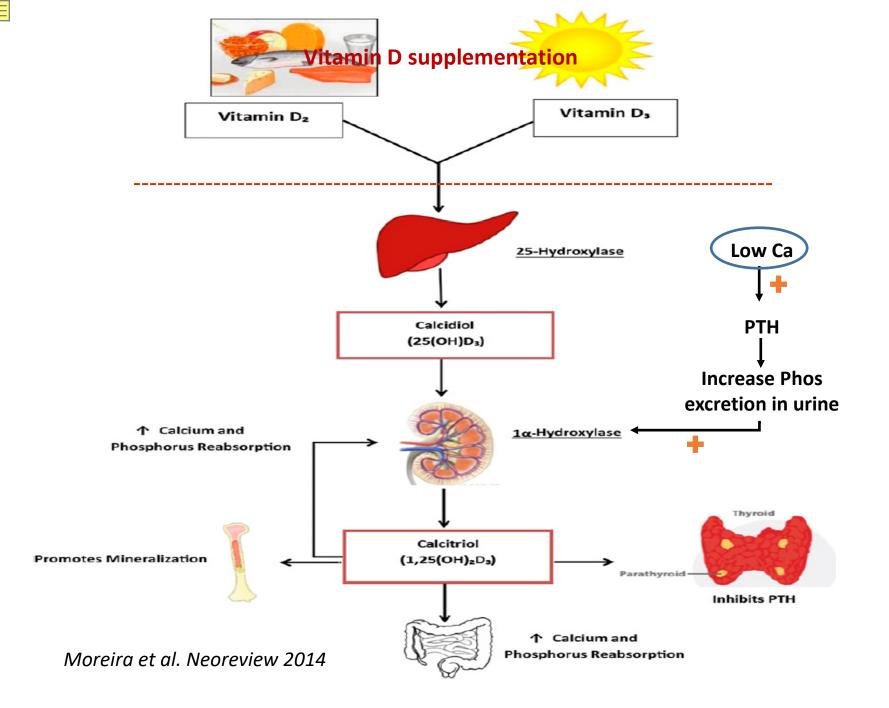
- Fetus maintains higher mineral concentrations than in the mother or normal adult
- Fetal bone and mineral metabolism are critically dependent on PTH and PTHrelated protein (PTHrP)


- A fetus typically accumulates 30 g of Ca by term
- 80% of mineral content is obtained in the 3rd trimester
- Ca accretion rate: 120-150 mg/kg/d
- Phos accretion rate: 75-85 mg/kg/d

Kovacs. Physiol Rev 2014

	PLACENTAL TRANSFER
Calcium	Active transport
25 hydroxyvitamin D	Yes
1, 25 dihydroxyvitamin D ₃	Νο
Phosphorus	Active transport
Calcitonin	Νο
Parathyroid hormone	Νο
Parathyroid hormone related peptide	No

Alshaikh et al, Nutrition in Focus. 2016


Preterm infants in the first few weeks of life

Calcium intake, mg \cdot kg body wt⁻¹ \cdot d⁻¹

- Intestinal Ca absorption is initially a passive process facilitated by lactose
- Preventing or correcting skeletal changes of MBD can be done independent of vitamin D sufficiency

Calcium and phosphorus hemostasis

Definition, etiology, consequences and risk factors

MBD

- MBD: Under-mineralization of the preterm infant's skeletal
- The literature uses various terminology:
 - Osteopenia of prematurity: reduction in bone mass in the absence of a skeletal mineralization disorder per se
 - Rickets of prematurity: mineralization disorders arising from lack of sufficient PO4 and/or Ca (which may be vitamin D deficiency-mediated) to mineralize the growth plate (rickets, children) and bone tissue (osteomalacia, adult)

Etiology

What is the etiology for MBD in preterm infants?

- Mainly vitamin D deficiency
- Mainly Phos deficiency
- Mainly Ca deficiency
- Phos and/or Ca deficiency → Vit D deficiency
- Vitamin D deficiency → Ca and/or phos deficiency

Incidence and Consequences

- Incidence remains unknown due to lack of consensus on definition (10-32% of VLBW infants)
- Fractures: Can go unrecognized
 - All preterm infant: 1.8% fractures, mostly posterior rib fractures (Lucas-Herald, pediatrics 2012)
 - ELBW: 31% has MBD & 10% fractures (Viswanathan 2014)
 - 30% rib fractures (Koo 1989)
- Rachitic Respiratory Distress (Glasgow 1977)
- Dolicocephaly (Pohlandt 1994)
- Long term outcomes:
 - Low BMD and BMC at 3 years (Mihatsch 2021)
 - Stunning linear growth: Correlation between high ALP and height at 18 month and adulthood (Lucas 1989, Fewtrell 2000, Abrams 1989)

Risk factors

Risk factor	Underlying mechanism(s)
Prematurity	 Loss of maximal in utero mineralisation.
Low birth weight	 Associated with prematurity. Associated with placental insufficiency resulting in reduced active placental transport of minerals in utero.
Loss of maternal oestrogen	 Increased osteoclast formation and bone resorption.
Reduced physical activity	 Increased bone resorption from reduced mechanical stimulation and deformation.
Parenteral nutrition	 Limitations in calcium and phosphate content due to precipitation.
Glucocorticoids	 Reduce gut absorption of minerals. Direct effect on bone (increased bone resorption and reduced bone formation).
Antacids	 Reduced gut absorption of calcium (neutralisation of stomach acid).
Loop diuretics	 Increased renal calcium loss (inhibition of calcium reabsorption).
Chronic lung disease/ bronchopulmonary dysplasia	 Higher energy requirements compromising mineral supply to the bones. Increased use of glucocorticoids and loop diuretics.
Necrotising enterocolitis	 Prolonged periods of parenteral nutrition. Poor gut function and therefore poor mineral absorption.
Excessive phosphate supplementation	Imbalance in calcium to phosphate ratio resulting in secondary hyperparathyroidism and bone resorption.

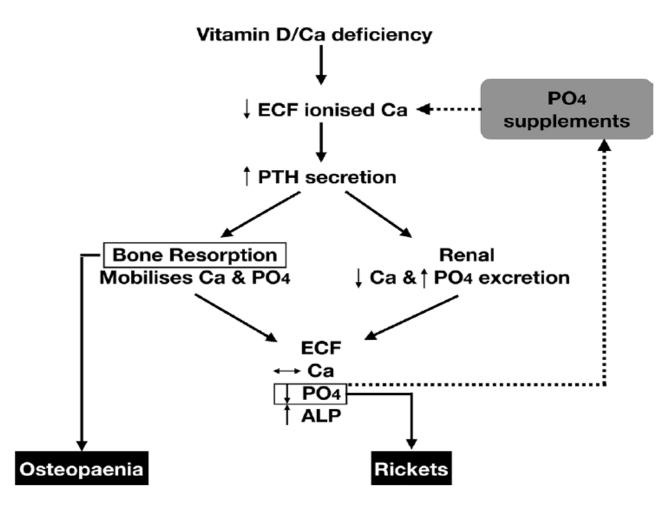
MBD: ALP >900 IU/L & phos <1.8 mmol/L High risk for MBD: ALP >900 IU/L OR phos <1.8 mmol/L

	Control (N= 191)	MBD (N= 27)	P-value
Gestational age (week)	30.6 (28.9, 31.6)	29.1 (27.5, 30.1)	0.005
Birth weight (g)	1280 (1099, 1440)	921 (850, 1230)	<0.001
Days on PN (day)	8 (6, 11)	10 (7, 20)	0.045
Duration of supplementary O2	120 (19, 654)	408 (96 <i>,</i> 888)	0.05
Late-onset sepsis, n (%)	49 (26)	13 (48)	0.03
Leukomalacia, n (%)	10 (5.2)	5 (19)	0.03
Blood transfusion, n (%)	76 (40)	20 (74)	0.002

MBD: BW was the only independent risk factor aOR/100 g= 0.81 (0.66 - 0.99) High risk for MBD:

BW aOR= 0.85 (0.73 - 0.99)

RBC transfusion aOR= 2.7 (1.3 – 5.5)


Avila-Alvarez et al. Nutrient 2020

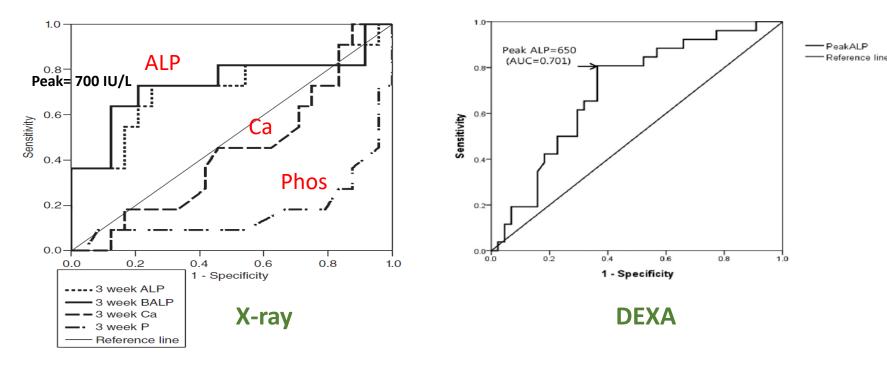
Drug	Mechanism
Corticosteroids ^{16,67}	Inhibits osteoblast activity; †osteoclast activity
	↑ excretion of Ca
	↑ bone resorption/↓ formation
Loop diuretics ^{16,67}	\uparrow excretion of Ca \rightarrow \uparrow bone resorption
CYP P450 3A4 inducers (eg, Phenobarbital) ^{97,101}	↑ metabolism of vitamin $D \rightarrow \downarrow$ levels
	\uparrow bone resorption/ \downarrow formation
TPN ^{16,67}	
Suboptimal Ca/P	\uparrow bone resorption/ \downarrow formation
Aluminum content	↓ formation
Emulsified mineral oil ⁹⁵	↓ absorption of vitamin D/Ca/P
Heparin ^{98,102,103}	↑ bone resorption/↓ formation
with prolonged therapy (more than 6 months)	
with higher dose therapy (more than 15 000	
units)	
Theophylline/caffeine96,99	\uparrow excretion of Ca \rightarrow \uparrow bone resorption
Proton pump inhibitors ¹⁰⁰	\downarrow acid secretion \rightarrow possible \downarrow Ca absorption

Begany et al, Ped Nutr Care 2012

It is important to identify the cause for high ALP

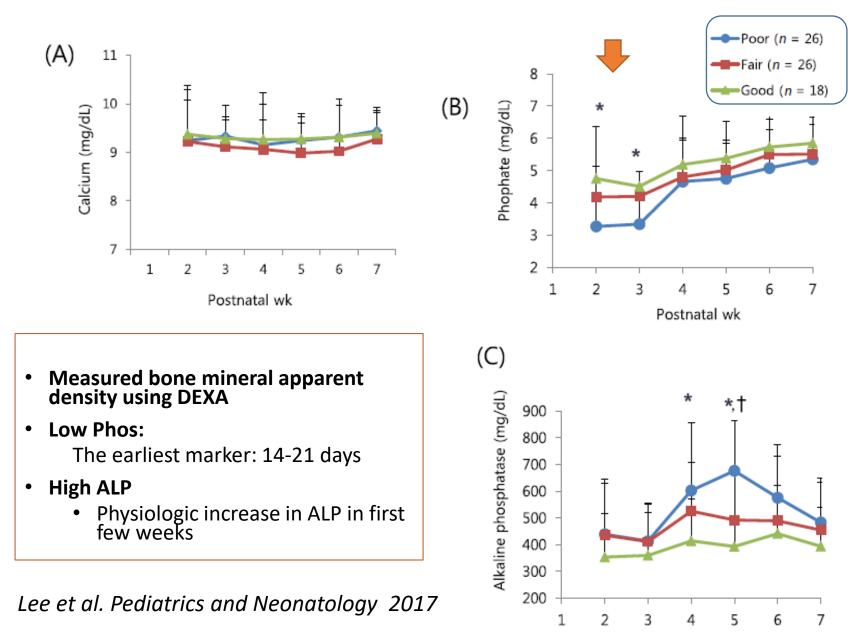
Chinoy et al. Arch Fetal & Neonatal 2019

Diagnosis


- Biochemical markers
- Urinary markers
- Radiologic test
 - Plain radiography
 - Dual-energy x-ray absorptiometry
 - Quantitative ultrasound
 - Photon absorptiometry

Biochemical & urinary markers

	Level of Interest	Key Points
ALP	>700-900 IU/L or >500 and trending up	 Elevated in liver disease Decreased with steroids
Phos	<1.8 mmol/L <1.5 mmol/L more sensitive	- Low values correlated with MBD, esp in combo with ALP
Са	<2.1 or >2.6 mmol/L	- Often not useful as isolated marker
РТН	>70-100 pg/mL (more sensitive > 180 pg/mL)	- Cord blood for term: 81-90 pg/ml
25(OH)D	<30 ng/mL (75 nmol/L) <20 ng/mL (50 nmol/L)= deficiency	- Similar in preterm infants with and without rickets
TRP	>95%	- Indicate inadequate phos supplement
U Ca/Cr	95 th centile 3.8 mmol/mmol	 Decrease with postnatal age Low in formula-fed infant
U Phos/Cr	95 th centile 26.7 mmol/mmol	- Stable with postnasal age


Hung et al. J Paed & child Health 2011

Lee et al. Pediatr and Neonatol 2017

ALP >900 U/L & phos <1.8 mmol/L at 3 months CGA was 100% sensitive and 71% specific for reduced BMC. **DEXA**

Backstrom et al. Acta Paediatr 2000

Postnatal wk

Tubular Reabsorption of Phos (TRP)

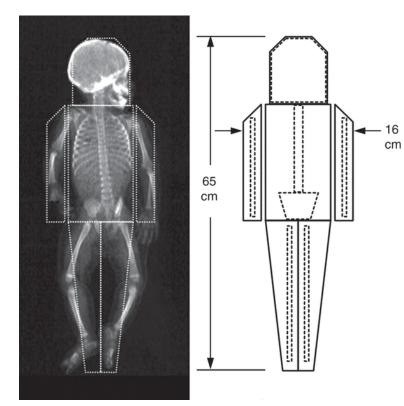
 $\mathbf{TRPi} = \left(\mathbf{1} - \frac{\mathbf{PO}_{4}(\mathbf{U}) \times \mathbf{Cr}(\mathbf{S})}{\mathbf{PO}_{4}(\mathbf{S}) \times \mathbf{Cr}(\mathbf{U})}\right) \times \mathbf{100}$

- <u>http://www.scymed.com/en/smnxps/pshpd274.htm</u>
- High TRP (>95%)
 - Body is depleted and trying to reabsorb all the secreted phos in urine
 - If combined with **normal PTH and low serum phos** \rightarrow low phos intake
- Low TRP (<80%)
 - Normal or primary renal injury
 - If combined with high PTH & low/normal serum phos \rightarrow low calcium intake
- TRP ≥95% and MBD
 - Positive predictive value 17%
 - Negative predictive value 90%

Acar et al. Turk Peds Arch 2015

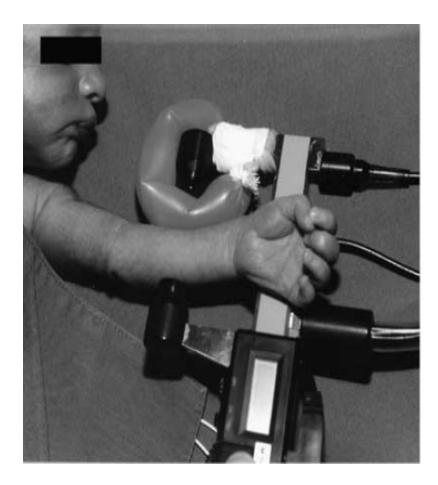
Radiology

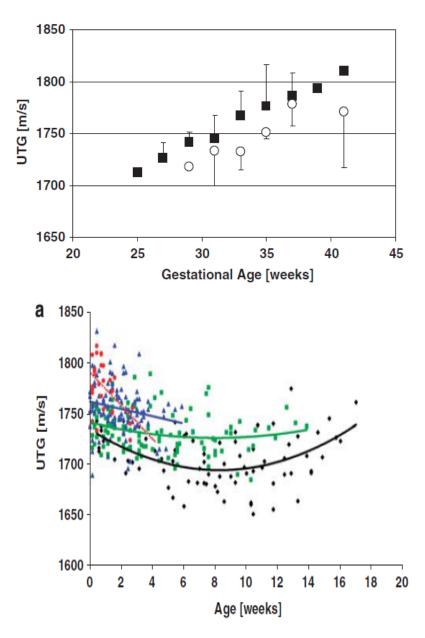
Plain radiography Dual-energy x-ray absorptiometry Quantitative ultrasound Photon absorptiometry



Koo classification

- 0 = normal bone
- 1= rarefaction only
- 2= bone end changes (frying/cupping metaphysis, sub-periosteal new bone formation)
- 3= fracture + above changes


Koo et al. Arch Dis Child, 1982


Dual-energy x-ray absorptiometry

- The gold standard for research
- Difficult to perform in preterm infants
- Bone mineral content (BMC g)
- Bone mineral density (BMD g/cm²)

Quantitative US

Screening Practices

What are the preliminary MBD screening tests you order (at the first screen)? Please click all that applies.

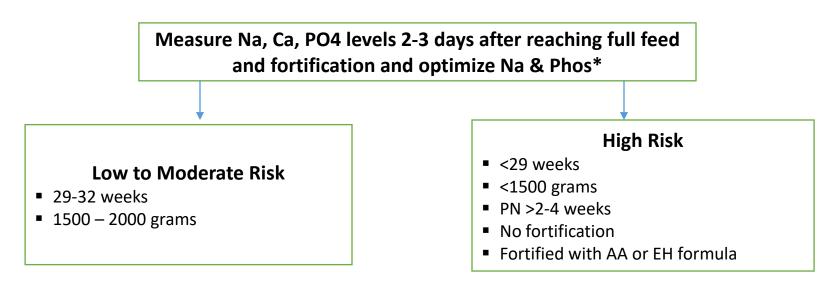
- Calcium
- Phos
- ALP
- PTH
- 25 OH vitamin D
- TRP: Renal tubular reabsorption of phos

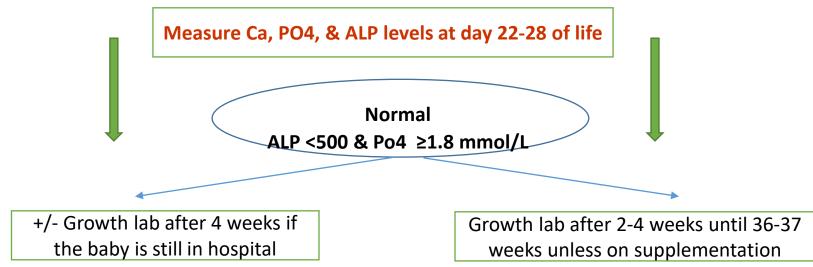
What are MBD screening tests you order to monitor progression? Please click all that applies.

- Calcium
- Phos
- ALP
- PTH
- 25 OH vitamin D
- TRP: Renal tubular reabsorption of phos
- X-ray
- Urine Ca/Cr ratio
- Urine Phos/Cr ratio

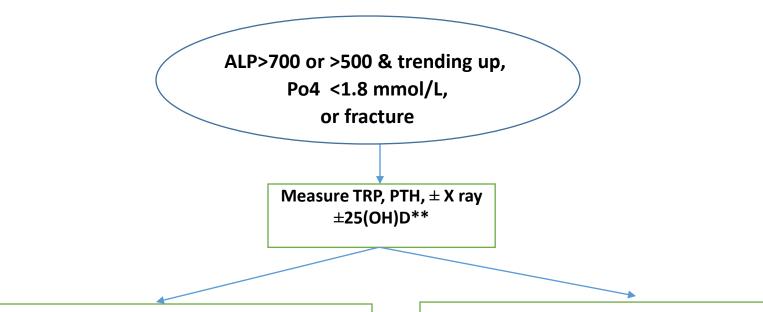
• There is wide variation between clinicians

Frequency of preliminary MBD screening tests (Responders= 177)


Frequency of tests used to monitor progression (Responders= 257)


Screening Test	% Responders (n)	Test	% Responders (n)
Serum calcium	88.1 (156)	Serum phosphate	74.3 (191)
Serum phosphate	92.7 (164)	Alkaline phosphatase	73.9 (190)
Alkaline phosphatase	99.4 (176)	Serum calcium	70.8 (182)
		X-ray	40.5 (104)
X-ray	18.1 (32)	I,25-(OH), vitamin D	24.1 (62)
Urine calcium or	2.8 (5)	25-(OH) vitamin D	22.2 (57)
calcium:creatinine		Parathyroid hormone	10.1 (26)
25-(OH) vitamin D	2.8 (5)	Serum magnesium	9.7 (25)
I,25-(OH), vitamin D	2.8 (5)	Urine calcium or calcium:creatinine	7.4 (19)
Parathyroid hormone	1.7 (3)	Urine phosphorus	1.6 (4)
Urine phosphorus	0.0 (0)	Tubular phosphate reabsorption	1.6 (4)
Other	2.3 (4)	Other	1.6 (4)

Kelly et al, Clinical pediatrics 2014


Screening approach

Consider Ca supplementation if:

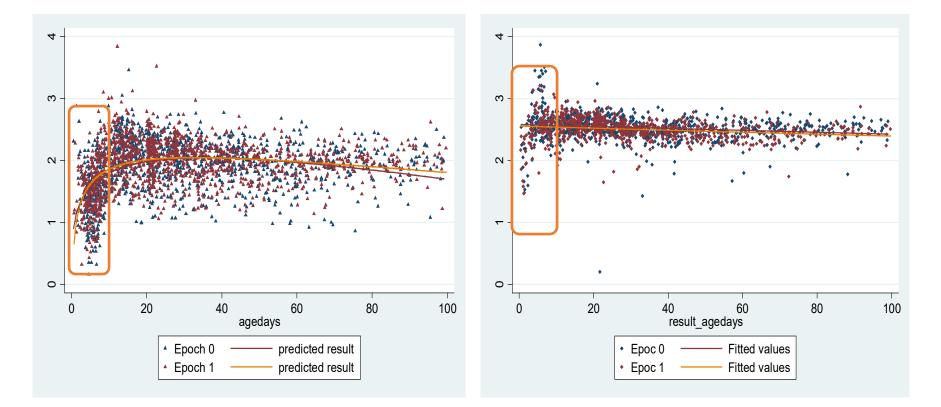
- PTH >70 pg/mL
- Low serum phos with low TRP
- Bone abnormality/fracture on X-ray

Optimize vitamin D

Consider phosphate supplementation if:

- Normal or low PTH
- Low serum phos with \geq 95%TRP
- Bone abnormality/fracture on X-ray

Optimize vitamin D

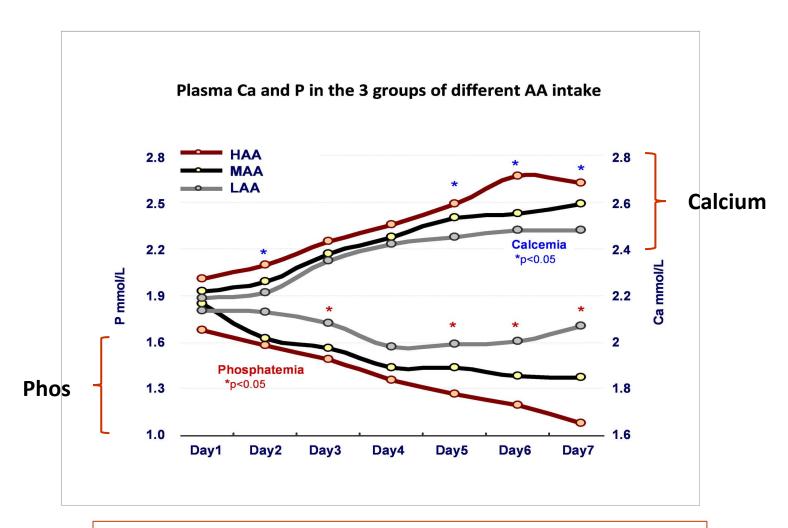

Prevention of MBD

- Micro and Macronutrients
 Ca, Phos & Vit D:

 Parenteral nutrition
 Enteral nutrition
- Physical exercise program
- Review medications
- Special handling precautions

Parenteral nutrition

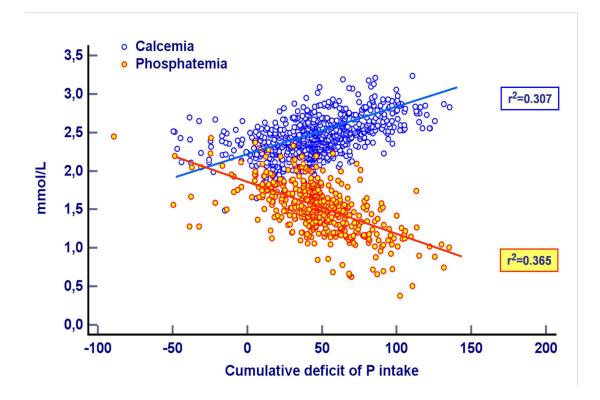
- Micronutrients
 - Ca, P, Mg
 - Vitamin D



Phosphorus

Calcium

Alshaikh et al. 2018

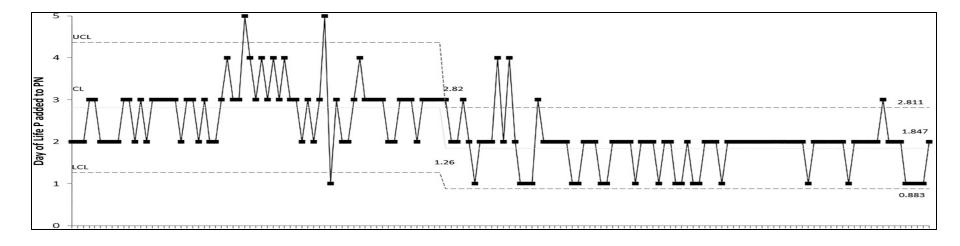


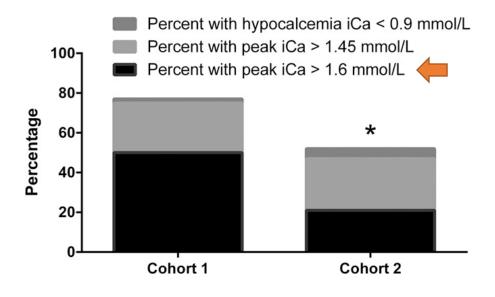
- Protein is a major determinant of tissue accretion
- 1 g/kg/d protein accretion needs 0.3 mmol/kg/d Phos

Bosante et al. BLOS 2013

- **Phos deficiency** \rightarrow \downarrow ATP & 2,3 DPG \rightarrow left shift of O2-Hg dissociation curve \rightarrow \downarrow peripheral O2 uptake and transport
- Severe P deficiency:
 - Delay weaning from respiratory support
 - Glucose intolerance

Bosante et al. BLOS 2013 Alsumrain et al. Ann Clin Lab Sci 2010 Paula et al. Horm Metab Res 1998




Age Suggested parenteral intake in mmol (mg)/kg/d				
	Ca	Р	Mg	
Preterm infants during the first days of life	0.8–2.0 (32–80)	1.0-2.0 (31-62)	0.1-0.2 (2.5-5.0)	
Growing premature infants	1.6–3.5 (64–140)	1.6–3.5 (50–108)	0.2–0.3 (5.0–7.5)	
0–6 m ^a	0.8–1.5 (30–60)	0.7–1.3 (20–40)	0.1-0.2 (2.4-5)	

- Early PN: Ca:P molar ratio= 0.8-1.0 → reduce hypercalcemia and hypophosphatemia
- Late PN: should be based on growth velocity to maintain Ca:P molar ratio= 1.3
- Organic P is recommended to prevent precipitation
- Plasma P should be monitored closely in SGA preterm infants
- Maternal MgSO4 → measurement of postnatal blood levels

Mihatsch et al. ESPGHAN/ESPEN. Clinical Nutrition 2018 Wang et al. Ped & Neonatol 2020

Is it doable?

Early provision of Phos in PN may decrease incidence of hypercalcemia

Hair et al. J nutrition 2016

Enteral Nutrition

Enteral Nutrition

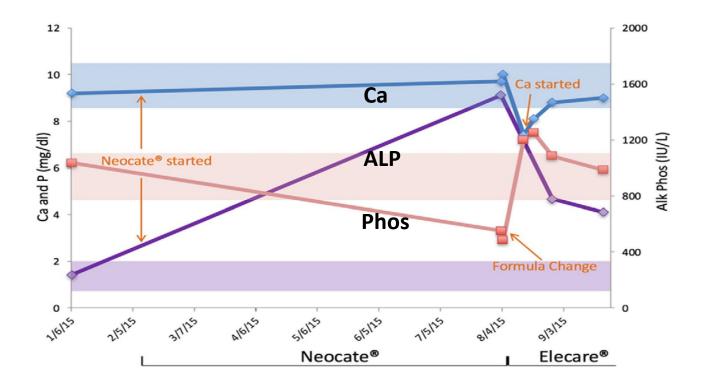
TABLE 4 Recommendations for Enteral Nutrition for VLBW Infants

	Calcium, mg/kg per day	Phosphorus, mg/kg per day	Vitamin D, IU/day
Tsang et al (2005) ³²	100-220	60-140	150–400 ^a
Klein (2002) ³³	150-220	100–130	135–338 ^b
Agostoni ^c (2010) ⁵	120-140	65–90	800–1000
This AAP clinical report	150-220	75–140	200–400

^a Text says "aim to deliver 400 IU/daily."

^b 90–125 IU/kg (total amount shown is for 1.5-kg infant).

^c Reflects European recommendations.


Abrams. AAP Clinical Report 2013

Enteral Feed	at 150 ml/kg/d feed at 150 ml/kg/d feed		Vitamin D Intake (IU/kg/d)
EBM	1.05	0.75	2
EBM ± 1 Similac HMF	3.0	2.2	90
EBM ± 2 Similac HMF	4.65	3.3	180
EBM 24 ± Enfacare	1.65	1.2	15
EBM 24 ± Nutramigen	1.5	1.05	10.5
Enfamil Premature 20	4.2	2.7	243
Enfamil Premature 24	4.95	3.3	293
Enfamil Enfacare 22	3.3	2.4	78
Enfamil A+	1.95	1.35	61.5
Nutramigen 20	2.4	1.65	51
Neocate 20	3.2	3	60
Puramino 20	2.4	1.65	51

Recommended doses (AAP)

In mmol	3 – 5.5	2.4-4.5	200-400
	mmol/kg/day	mmol/kg/day	IU/day*
In mg	150-220 mg/kg/day	75-140 mg/kg/day	-

Hydrolyzed and amino acid formulas

Form and source of phosphate in available amino acid formulas:

	Neocate®	Elecare®	Puramino®	Alfamino®
Form of PO4	Reformulated to K phosphate plus tribasic Ca phosphate plus Ca chloride plus Ca carbonate	Calcium phosphate plus K phosphate	Calcium phosphate plus Mg phosphate	Calcium glycerophos- phate

Ballesteros et al. PMC 2017

Vitamin D

What vitamin D dose you use for preterm infants in NICU?

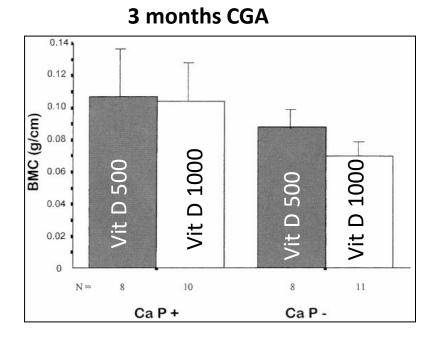
- 200 IU daily
- 400 IU daily
- 800 IU daily
- 1000 IU daily
- >1000 IU daily

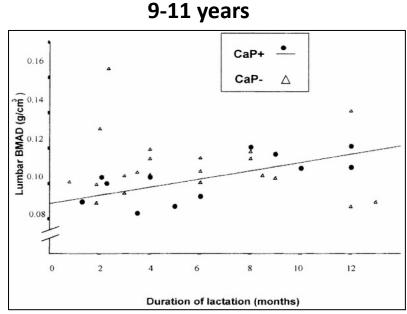
Vitamin D dose...

Variable	800-IU	400-IU	RR	Р
	Group	Group	(95% CI)	
40 ± 2 weeks' PMA				
n	42	45		
VDD (<20 ng/mL)	16 (38)	30 (67)	0.57 (0.37-0.88)	.008
Vitamin D severe deficiency ($<$ 5 ng/mL)	0	2 (4.4)	0.21 (0.01-4.33)	.50
3 months' CA				
п	40	40		
VDD (<20 ng/mL)	5 (12.5)	14 (35)	0.36 (0.14-0.90)	.02
Vitamin D severe deficiency ($<$ 5 ng/mL)	0	1 (2.5)	0.33 (0.01 to 7.94)	.99

800 IU daily \rightarrow less vitamin D deficiency but ...

Natarajan et al. Pediatrics 2013


\vee	


Variable	800-IU Group	400-IU Group	Mean Difference (95% CI)	Р
40 ± 2 weeks' PMA				
п	42	45		
Serum calcium, mg/dL	9.9 ± 0.9	9.9 ± 0.8	-0.02 (-0.34 to 0.39)	.89
Serum phosphorus, mg/dL	6.1 ± 1.2	6.3 ± 1.1	-0.17 (-0.69 to 0.34)	.50
Serum ALP, IU/L	236 (89–572)	276 (118-556)		.34
Serum PTH, pg/mL	22.3 (5.5–223)	27.2 (3.8–363)		.23
UCa/Cr ^a	1 (0.03–6)	0.71 (0.14-5)		.46
UCa/Cr >0.8 ^a , <i>n</i> (%)	16 (64)	15 (45)		.16
Nephrocalcinosis, <i>n</i>	0	0		
Weight, g	2489 ± 496	2468 ± 508	21 (-191 to 234)	.84
Length, cm	47.6 ± 3.3	46.6 ± 4.0	1.0 (-0.6 to 2.5)	.21
Occipitofrontal circumference, cm	33.3 ± 1.34	33.7 ± 2.4	0.4 (-0.5 to 1.2)	.36
3 months' CA				
п	40	40		
Serum calcium, mg/dL	10.1 ± 0.4	10.1 ± 0.4	0.05 (-0.14 to 0.25)	.58
Serum phosphorus, mg/dL	6.0 ± 1.1	6.2 ± 1.4	-0.24 (-0.82 to 0.34)	.42
Serum ALP, IU/L	266 (83-875)	236 (86-740)		.33
Serum PTH, pg/mL	27.8 (3.4–91.7)	31. 1 (4.5–135.4)		.48
UCa/Cr ^b	0.3 (0.08-2.3)	0.51 (0.08-2.3)		.27
UCa/Cr >0.8 ^b , <i>n</i> (%)	4 (15.4)	5 (20.8)		.72
Nephrocalcinosis, <i>n</i>	0	0		
Weight, g	4770 ± 820	4825 ± 1053	-56 (-472 to 361)	.79
Length, cm	57.0 ± 3.4	57.8 ± 4.0	-0.8 (-2.4 to 0.9)	.35
Occipitofrontal circumference, cm	38.0 ± 1.82	38.6 ± 1.7	-0.6 (-0.2 to 1.4)	.12
BMC, g ^c	79.6 ± 16.8	84.7 ± 20.7	-5.1 (-14.1 to 4.0)	.27
BMD, g/cm ^{2c}	0.152 ± 0.019	0.158 ± 0.021	-0.005 (-0.015 to 0.004)	.26

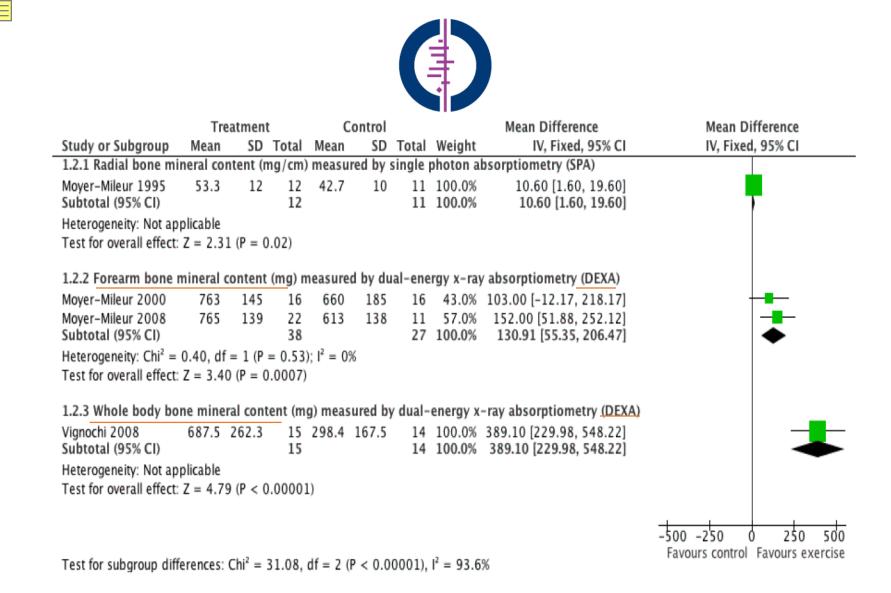
No benefits for the bones

Natarajan et al. Pediatrics 2013

- VLBW infants on breastmilk (0-3 mo)
- Lowest BMC was in the 1000 IU group without Ca & P supplementation

Correlation between duration of lactation and lumber BMD was **significant in the Ca & P +** supplementation group only

Backstrom et al. JPGN 1999

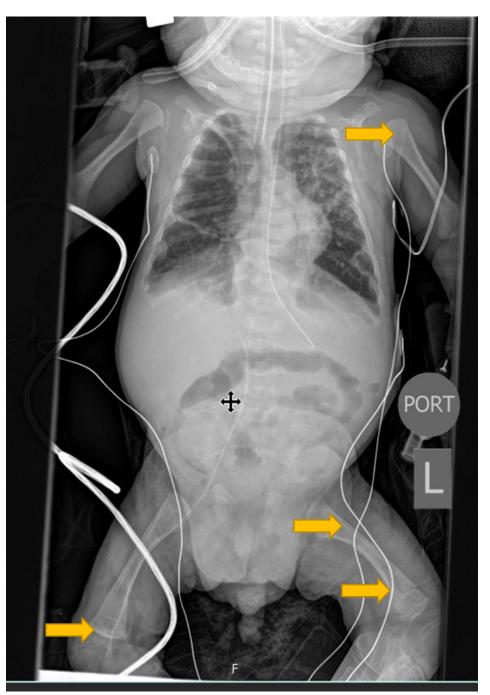

Macronutrients

Variables	Model R ²	Model <i>p</i> -Value	B (SE)	β	<i>p</i> -Value	
BM	BMC (g) at 6 months CA, $n = 58$					
Model 1	0.394	0.021				
Constant			99.07 (103.12)		0.345	
GA			-4.08(2.77)	-0.222	0.151	
Ethnicity			1.12 (2.23)	0.08	0.621	
Birthweight SDS			2.65 (6.40)	0.07	0.682	
Weight SDS 6 m CA			10.62 (4.06)	0.417	0.014	
NEC			19.37 (14.78)	0.232	0.201	
Mean energy intake in kcal $kg^{-1} day^{-1}$ week 1–4			1.28 (0.57)	0.406	0.033	
Model 2	0.337	0.013				
Constant			127.43 (101.60)		0.219	
GA			-3.69(2.77)	-0.201	0.194	
Weight SDS 6 m CA			11.33 (3.86)	0.437	0.007	
NEC			13.56 (14.26)	0.163	0.349	
Mean protein intake in g kg ^{-1} day ^{-1} week 1–4			30.59 (24.71)	0.354	0.046	
Model 3	0.247	0.011				
Constant			161.67 (93.78)		0.095	
GA			-4.47(2.76)	-0.243	0.115	
Weight SDS 6 m CA			10.78 (3.87)	0.423	0.009	
NEC			14.15 (14.66)	0.17	0.342	
Mean fat intake in g kg ^{-1} day ^{-1} week 1–4			22.14 (11.22)	0.343	0.05	

Fat & protein intakes in the first 4 weeks are also associated with BMC & BMD at 6-month CGA

Calor et al. Nutrients 2021

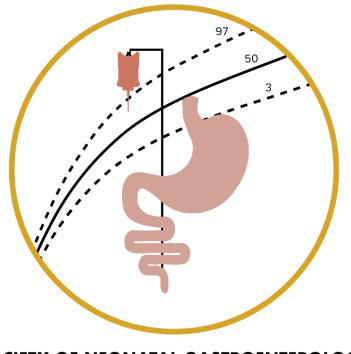
Physical activity programs


Schulzke et al. Cochrane 2014

Conclusion

- Adequate calcium and phos intake is critical to prevent MBD
- Appropriate Ca:P ratio is important and should always be maintained when supplementing calcium and phos
- Screening and early identification of MBD is critical to prevent complications
- MBD may have long term consequences
- Significant knowledge gaps exist regarding screening, prevention, and long-term sequelae

Answers


- Bone rarefaction
- Subperiosteal bone formation
- Metaphyseal alteration
- Long bone fracture

Answers

- Etiology: Phos and/or Ca deficiency followed by Vitamin D deficiency
- **Recommendation for vitamin D dose** for prevention of metabolic bone disease:
 - Enteral: 200–400 IU/day (AAP) to 800–1000 IU/day (ESPGHAN)
 - Don't exceed 1000 IU per day for prevention

THANK YOU

SOCIETY OF NEONATAL GASTROENTEROLOGY NUTRITION & GROWTH

https://cumming.ucalgary.ca/research/neonatal-growth