MD Student Lab Conduct GUIDELINE

Purpose of this Document:

To provide guidelines for MD students regarding conduct during learning sessions and examinations that use the ATSSL wet and dry lab facilities.

Preamble:

Lab based training is an important part of medical student training. It is important that conduct during these sessions is safe for all involved.

Rules of Conduct for all MD students:

1. MD program students will adhere to the Personal Protective Equipment (PPE) requirements as directed by the ATSSL protocols here http://vp.ucalgary.ca/images/policies/ATSSL_WetLabPPERequirements%20June%202015.pdf and will follow the rules of the ATSSL facility regarding proper use and disposal of these items.

2. MD program students will adhere to the rules of conduct as outlined by staff of the ATSSL facility. Examples of such rules of conduct include, but are not limited to; proper attire, proper disposal of sharps, proper handling of equipment and specimens etc.

Protocols for pregnant MD students:

For MD students who are pregnant during their training: Testing was performed in the ATSSL facility in 2017 in order to determine if there was any hazard to pregnant persons using the facility. The details of this report are included at the end of this document. Students who are pregnant may choose to wear a respirator when using the ATSSL lab facilities, if they wish.

Approved By: UME Management
Date: April 30, 2019
Pregnancy Recommendations for Exposure to Cadaveric Material in the ATSSL space

Recommendations regarding pregnant women in the ATSSL

There appears to be very low potential risk to the pregnant instructors or students during the lab teaching and learning activities outlined in the EHS Partnership reports for Dec 12 and Jan 3 air monitoring.

The University has an obligation to keep potential exposures as low as reasonably practicable. Implemented controls appear to be effective. It is recommended that the current controls continue to be evaluated and maintained. Changes to processes in the ATSSL may alter exposure levels and should be reevaluated if changes are made in the future. Occupants of the ATSSL space should be informed of potential hazards associated with exposure to the contaminants in the ATSSL space. They should be aware of the implemented controls and the importance of continuing to follow these controls.

Pregnant occupants who are concerned or have questions about their health risk should consult with a qualified healthcare professional. The overall exposure risk to all occupants appears very low, including for pregnant ATSSL occupants, however the risk is not zero and controls are in place to minimize risk. Additional controls beyond what are in place are not necessary, including for healthy pregnant individuals. Individual health assessments to consider comorbid conditions or other factors may be needed on a case-by-case basis.

Testing in ATSSL

Chemical monitoring was performed Dec 12, 2016 and January 3, 2017 for Formaldehyde, Methanol and Ethylene Glycol by EHS Partnerships. The results of the monitoring show that samples of the aforementioned chemicals were found to be well below the occupational exposure limit for Alberta for the work activities specified in the reports. Of all the ATSSL occupants, employees involved in teaching activities spend the most time exposed these chemicals. Students on average will spend two hours or less in a day and would have a lower exposure risk than the ATSSL instructors.

Potential Health Risks in Pregnancy

The following hazardous chemicals were identified through Safety Data Sheet (SDS) review of the materials used to prepare and maintain cadaveric substances:

- Formaldehyde,
- Methanol,
- Diethylene Glycol,
- Ethylene Glycol,
- Magnesium Sulfate Heptahydrate,
- N-alkyl (c12-c16) n,n dimethylybenzylammonium chloride.
Formaldehyde, Methanol, and Ethylene Glycol were found in the greatest composition of the hazardous components in the cadaveric material and were the primary focus of subsequent evaluation.

Formaldehyde, Methanol, and Ethylene Glycol are not believed to pose significant health risk to individuals at exposures below the occupational exposure limit. The exposures measured in the ATSSL were also well below the occupational exposure limit. It should be noted that there are limited available studies regarding reproductive risk; many studies are limited to animal models and routes of exposure may differ from that in the ATSSL lab. There is no significant evidence that exposure below the occupational exposure limit will cause adverse health effects in a pregnant women or their fetus.

The following resources are recommended for reviewing potential adverse health risks associated with chemical exposure. Note that much of the information regarding effects would apply with higher exposures of these agents and that the “dose makes the poison”.

1. Toxnet
2. Canadian Center for Occupational Health and Safety (CCOHS)
3. NIOSH Pocket Guide for Chemicals

Limitations of OELs
Occupational Exposure Limits refer to the amount of a contaminant that is believed to be safe (will not cause adverse health effects) for nearly all exposed persons. A limitation of an occupational exposure limit is that it may not apply to people with health conditions. For example, someone who has a pre-existing liver or kidney condition could be more susceptible to chemical toxicity. A pregnant individual’s overall health, age, and medical issues may add complexity to potential exposures and risk.

Accommodation Process
Work or educational accommodation may be necessary depending on the health evaluation of a pregnant ATSSL occupant. The occupant’s physician, supervisor, and Student Accessibility Services (student) or Staff Wellness (employee) can assist in providing appropriate accommodation if necessary.

Summary prepared by Brendan Webster, RN BN COHN(C)
Reviewed by Matthew Lauzon, MD FRCPC

References
January 24, 2017

University of Calgary
Occupational Hygiene, Environment, Health & Safety
2500 University Drive NW
Calgary, Alberta T2N 1N4
Tel: 403.220.3762
E-mail: raldridge@ucalgary.ca

Attention: Ms. Rae Ann Aldridge
Associate VP, Risk

RE: FORMALDEHYDE MONITORING AT THE HEALTH RESEARCH INNOVATION CENTRE ADVANCED TECHNICAL SKILLS SIMULATION LAB LOCATED AT THE UNIVERSITY OF CALGARY FOOTHILLS CAMPUS

Dear Ms. Aldridge,

Further to your request EHS Partnerships Ltd. (EHSp) completed formaldehyde monitoring at the Health Research Innovation Centre (HRIC) located at the University of Calgary (U of C) Foothills Campus in Calgary, Alberta. EHSp understands the monitoring was completed to quantify the airborne concentrations of formaldehyde, methanol, and ethylene glycol that may be present during lectures involving anatomy specimens. The assessment was completed on January 3, 2017 by Amara Snively, B.Sc., Project Technician, under the direction of Glyn Jones, M.A.Sc., P. Eng., CIH, CRSP, Partner for EHSp.

SCOPE OF WORK

The scope of work for the monitoring involved a program of instantaneous spot measurements and the collection of occupational air samples during the two tutorial sessions held in BA03A, BA03B, BA03C, and BA03D. Each session was approximately two (2) hours in duration.

Specifically, the following scope of work was completed:

- instantaneous spot measurements for formaldehyde;
- collection and analysis of four (4) occupational air samples for formaldehyde from the lab instructors;
- collection and analysis of four (4) occupational air samples for methanol (CAS 67-56-1) from the lab instructors;
- collection of four (4) occupational air samples for ethylene glycol (CAS 107-21-1) from the lab instructors; and
- the preparation of a report detailing the results.
REGULATIONS

Occupational exposure to a variety of chemical and other harmful substances is regulated in Alberta workplaces by Alberta Labour, Workplace Health and Safety. Part 4 Chemical Hazards, Biological Hazards and Harmful Substances of the Alberta OH&S Code, 2009 defines the general requirements for controlling worker exposure to chemicals in the workplace.

Part 2 Hazard Assessment, Elimination, and Control, of the Alberta OH&S Code, 2009, details the requirements of employers to assess their workplaces for hazards and develop appropriate controls. Section 9 Hazard Elimination and Control states that, if possible, an employer must eliminate the hazards or control the hazards. The first approach to controlling hazards is the use of engineering controls such as ventilation, followed by administrative controls such as job rotation, and then personal protective equipment (PPE) such as respirators. The use of PPE must always be considered as a last line of defense and can only be justified when all other controls are not feasible or not sufficient.

Part 4 Chemical Hazards, Biological Hazards and Harmful Substances of the Alberta OH&S Code, 2009 defines the general requirements for controlling worker exposure to chemicals in the workplace. Schedule 1, Table 2 Occupational Exposure Limits for Chemical Substances of the Alberta OH&S Code, 2009, defines occupational exposure limits (OEL) for a variety of airborne contaminants. The OEL for a particular contaminant represents conditions to which it is believed that nearly all workers may be exposed, day after day, without suffering from adverse health effects. Due to individual susceptibility, a small percentage of workers may experience discomfort at concentrations below the applicable OEL.

An 8-hour OEL refers to the maximum concentration, averaged over eight hours, to which a worker can be exposed to during a single work shift.

The short term exposure limit (STEL) refers to the maximum concentration of a substance to which it is believed that most workers may be exposed for a short period of time without suffering adverse health effects. The STEL is defined as a concentration of a substance in air which may not be exceeded over any 15 minute period, with a limit of no more than four periods in an 8-hour work shift with at least one hour between any two successive 15-minute periods. The ceiling limit refers to the maximum concentration of a substance which may not be exceeded at any time during the work period.

The applicable Alberta exposure limits for formaldehyde, methanol and ethylene glycol are presented in Table 1.

Table 1: Alberta Occupational Exposure Limits

<table>
<thead>
<tr>
<th>Chemical Substance</th>
<th>8-Hour OEL (^{(1)})</th>
<th>STEL (^{(2)})</th>
<th>Ceiling Limit (^{(3)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formaldehyde</td>
<td>0.75 ppm (^{(4)})</td>
<td>1.0 ppm</td>
<td>n/a (^{(5)})</td>
</tr>
<tr>
<td>Methanol</td>
<td>200 ppm</td>
<td>250 ppm</td>
<td>n/a</td>
</tr>
<tr>
<td>Ethylene glycol</td>
<td>n/a</td>
<td>n/a</td>
<td>100 mg/m(^3) (^{(6)})</td>
</tr>
</tbody>
</table>

Notes:
(1) OEL – Occupational Exposure Limit
(2) STEL – Short Term Exposure Limit
(3) Ceiling Limit - May not be exceeded at any time
(4) ppm – parts per million by volume of air
(5) n/a – not applicable
(6) mg/m\(^3\) – milligrams per meter cubed by volume of air
METHODOLOGY

Instantaneous spot measurements for formaldehyde were made using a calibrated FM-801 Formaldehyde Multimode Monitor. The portable detector uses photoelectric photometry with colorimetric detection tabs. Samples were collected over a 10 minute sampling period at a height consistent with an individual’s breathing zone.

The occupational air samples for formaldehyde were collected using passive dosimetry badges (Assay Badge 571) following the Occupational Safety and Health Administration (OSHA) method 1007. The passive badges were placed in the individual’s breathing zones for the duration of the tutorial. The badges were sent to SGS Galson Laboratories Ltd., an American Industrial Hygiene Association (AIHA) accredited laboratory, for analysis.

The occupational air samples for methanol were collected using passive dosimetry badges (Assay Badge 546) following OSHA modified method 7. The passive badges were placed in the individual’s breathing zones for the duration of the tutorial. The badges were sent to Assay Technology Inc., an AIHA accredited laboratory, for analysis.

The occupational air samples for ethylene glycol were collected following the National Institute for Occupational Safety and Health (NIOSH) method 5523. The samples were collected using calibrated industrial hygiene pumps and method-appropriate media. The samples were sent to SGS Galson Laboratories Inc. for analysis.

Field blank samples were collected and issued to the laboratory. Field blanks are used to assess sample handling in the field and are handled exactly the same way as samples, except they are not exposed to the work environment.

OBSERVATIONS

A facility map of the sampling locations is provided in Appendix I.

The lab was divided into four pods: Pod A, B, C, and D. Respiratory anatomy is conducted in Pods A and B and cardiac anatomy is conducted in Pods C and D. Each tutorial session lasted for approximately two (2) hours, with groups of approximately 20 students assigned to each pod. Students rotated to a new pod after approximately one (1) hour of time had elapsed. Tutorial sessions were conducted in the morning and afternoon. Instructors had a one (1) hour break between the morning and afternoon tutorial sessions. The specimen bags were sealed during the break.

PPE for individuals working in the Pods included disposable plastic aprons or cotton lab coats and nitrile gloves. The use of eye protection was not observed at the time of the assessment. The Pods are equipped with standard dilution ventilation.
Pod A

Pod A is a respiratory anatomy pod with seven anatomical specimen stations. A partition separates Pods A and B. The partition between Pod A and B was open and one (1) specimen was being shared between the pods at the time of the assessment. Instructor activity included respiratory anatomy demonstrations on the specimens for students at each of the specimen stations. Following the demonstration, students were allowed to examine the specimens at their own pace. A significant portion of the lab period was allotted to student examination, where the majority of specimen bags were open. By the end of the tutorial, the majority of specimen containers and bags were left unsealed.

Pod B

Pod B is a respiratory anatomy pod with six anatomical specimen stations. A partition separates Pods A and B as well as Pods B and C. The partition between Pod A and B was open and one (1) specimen was being shared between the pods at the time of the assessment. Instructor activity included respiratory anatomy demonstrations on the specimens for students at each of the specimen stations. Following the demonstration, students were allowed to examine the specimens at their own pace. Specimens not being examined were resealed in their containers or bags.

Pod C

Pod C is a cardiac anatomy pod with five anatomical specimen stations. A partition separates Pods B and C as well as Pods C and D. The partition between Pod C and D was closed at the time of the assessment. Instructor activity included cardiac anatomy demonstrations on the specimens for students at each of the specimen stations. Following the demonstration, students were allowed to examine the specimens at their own pace. Specimens not being examined were resealed in their containers or bags.

Pod D

Pod D is a cardiac anatomy pod with six anatomical specimen stations. A partition separates Pods C and D. The partition between Pod C and D was closed at the time of the assessment. Instructor activity included cardiac anatomy demonstrations on the specimens for students at each of the specimen stations. Following the demonstration, students were allowed to examine the specimens at their own pace. Specimen containers and bags were left open for the duration of the tutorial sessions.
RESULTS

Instantaneous Spot Measurements

Background measurements were made prior to the specimen tutorial. The instantaneous spot measurements for formaldehyde are presented in Table 2.

Table 2: Instantaneous Measurements for Formaldehyde

<table>
<thead>
<tr>
<th>Location</th>
<th>Activity</th>
<th>Results (ppm) (^{(1)})</th>
<th>8 Hour OEL (^{(2)}) (ppm)</th>
<th>Ceiling Limit (^{(3)}) (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Lab</td>
<td>No activity – prior to lab</td>
<td><0.010 (^{(4)})</td>
<td>0.75</td>
<td>1.0</td>
</tr>
<tr>
<td>Pod A: Respiratory Anatomy</td>
<td>Start of session – specimens on trays</td>
<td>(<0.010)</td>
<td>0.75</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Examination of full body specimens – two bags unsealed</td>
<td>(<0.010)</td>
<td>0.75</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Groups of students examining specimens – all bags unsealed</td>
<td>(<0.010)</td>
<td>0.75</td>
<td>1.0</td>
</tr>
<tr>
<td>Pod B: Respiratory Anatomy</td>
<td>Start of session – one full body specimen unsealed</td>
<td>(<0.010)</td>
<td>0.75</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Two full body specimens unsealed</td>
<td>(<0.010)</td>
<td>0.75</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Groups of students examining specimens – all bags unsealed</td>
<td>(<0.010)</td>
<td>0.75</td>
<td>1.0</td>
</tr>
<tr>
<td>Pod C: Cardiac Anatomy</td>
<td>Start of session – Instructor demonstrating anatomy on one specimen</td>
<td>(<0.010)</td>
<td>0.75</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Instructor demonstrating anatomy on one full body specimen – no other bags unsealed</td>
<td>(<0.010)</td>
<td>0.75</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Groups of students examining specimens – all bags unsealed</td>
<td>(<0.010)</td>
<td>0.75</td>
<td>1.0</td>
</tr>
<tr>
<td>Pod D: Cardiac Anatomy</td>
<td>Start of session – Instructor demonstrating anatomy on one full body specimen</td>
<td>(<0.010)</td>
<td>0.75</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Instructor demonstrating anatomy on one full body specimen – all four bags unsealed</td>
<td>0.013</td>
<td>0.75</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Groups of students examining specimens – all bags unsealed</td>
<td>0.016</td>
<td>0.75</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Notes:
- \(^{(1)}\) ppm – parts per million by volume of air
- \(^{(2)}\) OEL – Occupational Exposure Limit
- \(^{(3)}\) Ceiling Limit - May not be exceeded at any time
- \(^{(4)}\) analyte is less than the instrument’s limit of quantification
- \(^{(5)}\) <MLQ – less than the method’s limit of quantification
Occupational Air Sampling

The air sampling results for formaldehyde are presented in Table 3. The full laboratory report is presented in Appendix II.

Table 3: Air Sampling Results for Formaldehyde

<table>
<thead>
<tr>
<th>Sample Description</th>
<th>Sample ID</th>
<th>Results (ppm)(^{(1)})</th>
<th>8-hour OEL(^{(2)}) (ppm)</th>
<th>OEL Comparative(^{(3)}) (% OEL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pod A: Respiratory Anatomy</td>
<td>Occ1 Form (MB 3639)</td>
<td>0.1</td>
<td>0.75</td>
<td>10% - 50%</td>
</tr>
<tr>
<td>Pod B: Respiratory Anatomy</td>
<td>Occ4 Form (MB0309)</td>
<td>0.08</td>
<td>0.75</td>
<td><10%</td>
</tr>
<tr>
<td>Pod C: Cardiac Anatomy</td>
<td>Occ3 Form (MB3523)</td>
<td>0.08</td>
<td>0.75</td>
<td><10%</td>
</tr>
<tr>
<td>Pod D: Cardiac Anatomy</td>
<td>Occ2 Form (MB3492)</td>
<td>0.31</td>
<td>0.75</td>
<td>10% - 50%</td>
</tr>
<tr>
<td>Field Blank</td>
<td><MLQ(^{(4)})</td>
<td>n/a(^{(5)})</td>
<td>n/a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

(1) ppm - parts per million
(2) OEL – occupational exposure limit
(3) interpretation of the sample results compared to the OEL
(4) <MLQ – denotes less than the method limit of quantification
(5) n/a – not applicable

The air sampling results for methanol are presented in Table 4. The full laboratory report is presented in Appendix II.

Table 4: Air Sampling Results for Methanol

<table>
<thead>
<tr>
<th>Sample Description</th>
<th>Sample ID</th>
<th>Results (ppm)(^{(1)})</th>
<th>8-hour OEL(^{(2)}) (ppm)</th>
<th>OEL Comparative(^{(3)}) (% OEL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pod A: Respiratory Anatomy</td>
<td>Occ1 (LS 5786)</td>
<td><2.9(^{(4)})</td>
<td>200</td>
<td><MLQ(^{(5)})</td>
</tr>
<tr>
<td>Pod B: Respiratory Anatomy</td>
<td>Occ4 (LS 6753)</td>
<td><2.8</td>
<td>200</td>
<td><MLQ</td>
</tr>
<tr>
<td>Pod C: Cardiac Anatomy</td>
<td>Occ3 (LS 6705)</td>
<td><3.0</td>
<td>200</td>
<td><MLQ</td>
</tr>
<tr>
<td>Pod D: Cardiac Anatomy</td>
<td>Occ2 (LS 6738)</td>
<td>5.2</td>
<td>200</td>
<td><10%</td>
</tr>
<tr>
<td>Field Blank</td>
<td><MLQ</td>
<td>n/a(^{(6)})</td>
<td>n/a</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

(1) ppm - parts per million
(2) OEL – occupational exposure limit
(3) interpretation of the sample results compared to the OEL
(4) < - less than the lab’s limit of quantification
(5) <MLQ – denotes less than the method limit of quantification
(6) n/a – not applicable
The air sampling results for ethylene glycol are presented in Table 5. The full laboratory report is presented in Appendix II.

Table 5: Air Sampling Results for Ethylene Glycol

<table>
<thead>
<tr>
<th>Sample Description</th>
<th>Sample ID</th>
<th>Results (mg/m3)$^{(1)}$</th>
<th>Ceiling Limit$^{(2)}$ (mg/m3)</th>
<th>Ceiling Limit Comparative$^{(3)}$ (% OEL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pod A: Respiratory Anatomy</td>
<td>Occ1 EG</td>
<td>0.13</td>
<td>100</td>
<td><10%</td>
</tr>
<tr>
<td>Pod B: Respiratory Anatomy</td>
<td>Occ4 EG</td>
<td><0.083$^{(4)}$</td>
<td>100</td>
<td><MLQ$^{(5)}$</td>
</tr>
<tr>
<td>Pod C: Cardiac Anatomy</td>
<td>Occ3 EG</td>
<td><0.050</td>
<td>100</td>
<td><MLQ</td>
</tr>
<tr>
<td>Pod D: Cardiac Anatomy</td>
<td>Occ2 EG</td>
<td><0.097</td>
<td>100</td>
<td><MLQ</td>
</tr>
<tr>
<td>Field Blank</td>
<td></td>
<td><MLQ</td>
<td>n/a$^{(6)}$</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Notes:

1. mg/m3 – milligrams per meter cubed
2. Ceiling Limit – must not exceed at any time during the work shift
3. Interpretation of the sample results compared to the Ceiling Limit
4. < - less than the lab’s limit of quantification
5. <MLQ – denotes less than the method limit of quantification
6. n/a – not applicable

DISCUSSION

There are a number of sources of variability in occupational hygiene monitoring, including changes in the indoor and outdoor environment, process changes, differences in worker activity, and inconsistent use of controls. With a limited number of samples for a particular contaminant, job task, or location, interpretation of the results should be guided by the following standards:

1. It can be concluded with a reasonable degree of confidence that any result over 50% of the applicable exposure criteria should be considered an indication of a significant potential for worker overexposure.
2. It can be concluded with a reasonable degree of confidence that any result between 10% and 50% of the applicable exposure criteria give an indication of the potential for worker overexposure.
3. It can be concluded with a reasonable degree of confidence that any result of less than 10% of the applicable exposure criteria indicates a low potential for worker overexposure.

Instantaneous Measurements

The results of the instantaneous readings may vary depending upon the equipment and processes that were active at the time of the assessment.

Instantaneous spot measurements identified the presence of formaldehyde during the following activities:

- Four (4) specimen bags unsealed during tutorial in Pod D; and
- Four (4) specimen bags unsealed during students examinations in Pod D.

The remaining activities from Pods A, B, and C measured concentrations of formaldehyde below the instrument’s detection limit. Results did not exceed the Alberta 8-hour OEL and Ceiling Limit.

EHS Partnerships Ltd.
Full-shift Occupational Air Sampling

The full-shift occupational air samples collected for formaldehyde on the Instructors working in Pod A and D were between 10% and 50% of the 8-hour Alberta OEL. These results indicate that unprotected Instructors have the potential of being overexposed to formaldehyde during the specimen tutorials. Specimen bags were left unsealed throughout the tutorial session.

The full-shift occupational air samples collected for formaldehyde on the Instructors working in Pods B and C were less than 10% of the 8-hour Alberta OEL. These results indicate that unprotected Instructors have a low potential of being overexposed to formaldehyde during the specimen tutorials. Specimen bags were sealed following the examination of each specimen during the tutorial session.

The full-shift occupational air samples collected for methanol on the Instructors working in Pods A, B, C, and D were less 10% of the 8-hour Alberta OEL and less than the method’s limit of quantification. These results indicate that unprotected Instructors have a low potential of being overexposed to methanol during the specimen tutorials.

The full-shift occupational air samples collected for ethylene glycol on the Instructors working in Pods A, B, C, and D were less 10% of the 8-hour Alberta Ceiling Limit and less than the method’s limit of quantification. These results indicate that unprotected Instructors have a low potential of being overexposed to ethylene glycol during the specimen tutorials. There is no 8-hour Alberta OEL listed for ethylene glycol.

CONCLUSIONS

Based on the site observations and the results of the assessment, EHS concludes the following:

1. Concentrations of formaldehyde were identified in Pod D with all specimen bags unsealed during the tutorial and during student examinations.

2. The Instructors working in Pods A and D have the potential of being overexposed to formaldehyde. The Instructors were not overexposed to methanol and ethylene glycol at the time of the assessment.

3. Instructors working in Pods B and C were not overexposed to formaldehyde, methanol, and ethylene glycol at the time of the assessment.

RECOMMENDATIONS

Recommendations should be considered with the hierarchy of controls as established in the Alberta Occupational Health & Safety Code. The hierarchy of controls is as follows:

- elimination;
- engineering controls (i.e. ventilation, shielding, etc.);
- administrative controls (i.e. safe work procedures, posted signage, etc.); and
- personal protective equipment (i.e. respirators, hearing protection, etc.).

If the hazard cannot be eliminated or controlled a combination of engineering, administrative, and personal protective equipment may be used.
Based on the conclusions of the assessment, EHS recommends the following:

1. The current controls, such as ventilation and handling procedures, should be regularly reviewed to confirm they are effective at minimizing worker exposure. Administrative controls such as maintaining a clean work environment and good housekeeping practices effectively minimize potential exposures. This includes closing specimen bags and containers following each practical examination, sealing medical waste bins with lids, and limiting activities where leaning over the specimens is required.

2. If changes in equipment or operating procedures occur, occupational exposure sampling should be repeated to re-assess potential exposure.

STATEMENT OF LIMITATIONS

The data and findings presented in this report are valid as of the dates of the investigation. The passage of time, manifestation of latent conditions or occurrence of future events may warrant further exploration at the properties, analysis of the data, and re-evaluation of the findings, observations, and conclusions expressed in this report.

This report is for the exclusive use of the University of Calgary and their authorized agents. Third party use of this report, or any reliance or decisions made on the information herein, is at the sole risk of the third party. EHS has no obligation, contractual or otherwise, to any third persons using or relying upon this report for any reason and therefore accepts no responsibility for damage suffered by any third party as a result of actions collected or decisions made on the basis of information or conclusions of this report.

CLOSURE

If you have any questions or require any further information, please feel free to contact Ashley Bonser at 403.243.0700 or at abonser@ehsp.ca. Thank you for the opportunity to be of service.

Sincerely,

EHS PARTNERSHIPS LTD.

per:

Report reviewed by:

Brian Denny, B.Sc.
Operations Manager

Report reviewed by:

Paul MacKinnon, M.Sc., CIH
Partner

EHS Partnerships Ltd.
APPENDIX I

MAP OF SAMPLING LOCATIONS
ATSSL Formaldehyde Monitoring Locations January 3, 2017

EHS Partnerships Ltd.
4303 - 11 Street SE
Calgary, AB T2G 4X1
Phone: 403.243.0700 Fax: 403.243.0760

CLIENT/SITE
University of Calgary

LEGEND
- Monitoring Station
- Full Body Specimen
- Component Specimen

MONITORING STATION
- Respiratory Pod A
- Respiratory Pod B
- Cardiology Pod C
- Cardiology Pod D

REFERENCES
- Archibus Building Floor Plans

PROJECT
010MM-16-127

SCALE
NTS

DATE
January 2017

REV
1.0

DRAWN BY
JE
APPENDIX II
LABORATORY RESULTS
Ms. Amara Snively
EHS Partnerships, Ltd.
4303 11th Street SE
Calgary, AB T2G 4X1
Canada

DOH ELAP #11626
AIHA-LAP #100324
Account# 17567
Login# L395610

Dear Ms. Snively:

Enclosed are the analytical results for the samples received by our laboratory on January 05, 2017. All test results meet the quality control requirements of AIHA-LAP and NELAC unless otherwise stated in this report. All samples on the chain of custody were received in good condition unless otherwise noted.

Results in this report are based on the sampling data provided by the client and refer only to the samples as they were received at the laboratory. Unless otherwise requested, all samples will be discarded 14 days from the date of this report, with the exception of IOMs, which will be cleaned and disposed of after seven calendar days.

Current Scopes of Accreditation can be viewed at www.galsonlabs.com in the accreditations section under the "about Galson" tab.

Please contact Charlene Moser at (888) 432-5227, if you would like any additional information regarding this report. Thank you for using SGS Galson Laboratories.

Sincerely,

SGS Galson Laboratories

[Signature]
Lisa Swab
Laboratory Director

Enclosure(s)

Galson Laboratories, Inc. is now a part of SGS, the world’s leading inspection, verification, testing, and certification company. As part of our transition to SGS, you will begin to see some formatting changes with reports that will improve the presentation of data and allow for the transition to the new logo.
LABORATORY ANALYSIS REPORT

Client: EHS Partnerships, Ltd.
Account No.: 17567
Site: HRIC ATSSL
Login No.: L395610
Project No.: 010MM-16-127
Date Sampled: 03-JAN-17
Date Analyzed: 06-JAN-17
Date Received: 05-JAN-17
Report ID: 975700

Formaldehyde

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Lab ID</th>
<th>Time (minutes)</th>
<th>Total (ug)</th>
<th>Conc (mg/m³)</th>
<th>Conc (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCC 1 FORM MB3639</td>
<td>L395610-1</td>
<td>213</td>
<td>0.4</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>OCC 2 FORM MB3492</td>
<td>L395610-2</td>
<td>197</td>
<td>1.2</td>
<td>0.38</td>
<td>0.31</td>
</tr>
<tr>
<td>OCC 3 FORM MB3523</td>
<td>L395610-3</td>
<td>195</td>
<td>0.3</td>
<td>0.1</td>
<td>0.08</td>
</tr>
<tr>
<td>OCC 4 FORM MB0309</td>
<td>L395610-4</td>
<td>221</td>
<td>0.4</td>
<td>0.1</td>
<td>0.08</td>
</tr>
<tr>
<td>BLANK FORM MB3756</td>
<td>L395610-5</td>
<td>NA</td>
<td><0.1</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Level of quantitation: 0.1 ug
Submitted by: EAW
Analytical Method: mod. OSHA 1007; HPLC/UV
Approved by: NKP
OSHA PEL: 0.75 ppm (TWA)
Date: 12-JAN-17
NYS DOH #: 11626
Collection Media: AN571
Supervisor: MWJ
QC by: KSB

< -Less Than
> -Greater Than

mg -Milligrams: m³ -Cubic Meters
kg -Kilograms: NS -Not Specified
ND -Not Detected: ppm -Parts per Million

Page 2 of 6
Report Reference:1 Generated:12-JAN-17 11:01
Ethylene Glycol

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Lab ID</th>
<th>Air Vol liter</th>
<th>Front ug</th>
<th>Back ug</th>
<th>Total ug</th>
<th>Conc mg/m³</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCC 1 EG</td>
<td>L395610-6</td>
<td>108</td>
<td>14</td>
<td><10</td>
<td>14</td>
<td>0.13</td>
<td>0.051</td>
</tr>
<tr>
<td>OCC 2 EG</td>
<td>L395610-7</td>
<td>101</td>
<td><10</td>
<td><10</td>
<td><9.8</td>
<td><0.097</td>
<td><0.038</td>
</tr>
<tr>
<td>OCC 3 EG</td>
<td>L395610-8</td>
<td>195</td>
<td><10</td>
<td><10</td>
<td><9.8</td>
<td><0.050</td>
<td><0.020</td>
</tr>
<tr>
<td>OCC 4 EG</td>
<td>L395610-9</td>
<td>118</td>
<td><10</td>
<td><10</td>
<td><9.8</td>
<td><0.083</td>
<td><0.033</td>
</tr>
<tr>
<td>FIELD BLANK EG</td>
<td>L395610-10</td>
<td>NA</td>
<td><10</td>
<td><10</td>
<td><9.8</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Level of quantitation: 10. ug

Analytical Method: mod. NIOSH 5523; GC/FID

OSHA PEL: NA

Collection Media: 226-57
This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained herein reflects the Company’s findings at the time of its intervention only and within the limits of Client’s instructions, if any. The Company’s sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise noted below, all quality control results associated with the samples were within established control limits or did not impact reported results.

Note: The findings recorded within this report were drawn from analysis of the sample(s) provided to the laboratory by the Client (or a third party acting at the Client’s direction). The laboratory does not have control over the sampling process. The findings herein constitute no warranty of the samples’ representativeness of any sampled environment and strictly relate to the samples as they were presented to the laboratory.

Unrounded results are carried through the calculations that yield the final result and the final result is rounded to the number of significant figures appropriate to the accuracy of the analytical method. Please note that results appearing in the columns preceding the final result column may have been rounded and therefore, if carried through the calculations, may not yield an identical final result to the one reported.

The stated LOQs for each analyte represent the demonstrated LOQ concentrations prior to correction for desorption efficiency (if applicable).

Unless otherwise noted below, reported results have not been blank corrected for any field blank or method blank.

L395610 (Report ID: 975700):
Total ug corrected for a desorption efficiency of 96%.
FORMALDEHYDE results have been corrected for the average background found on the media:
0.021 ug for lot #9B16 (samples 1-5).
SOPs: LC-SOP-4(16)

L395610 (Report ID: 975700):
Accuracy and mean recovery data presented below is based on a 95% confidence interval (k=2). The estimated accuracy applies to the media, technology, and SOP referenced in this report and does not account for the uncertainty associated with the sampling process. The accuracy is based solely on spike recovery data from internal quality control samples. Where N/A appears below, insufficient data is available to provide statistical accuracy and mean recovery values for the associated analyte.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Accuracy</th>
<th>Mean Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formaldehyde</td>
<td>+/-12.1%</td>
<td>101%</td>
</tr>
</tbody>
</table>

L395610 (Report ID: 975646):
Total ug corrected for a desorption efficiency of 102%.

< Less Than mg -Milligrams m3 -Cubic Meters kg -Kilograms ppm -Parts per Million
> Greater Than ug -Micrograms l -Liters NS -Not Specified ND -Not Detected NA -Not Applicable
Accuracy and mean recovery data presented below is based on a 95% confidence interval (k=2). The estimated accuracy applies to the media, technology, and SOP referenced in this report and does not account for the uncertainty associated with the sampling process. The accuracy is based solely on spike recovery data from internal quality control samples. Where N/A appears below, insufficient data is available to provide statistical accuracy and mean recovery values for the associated analyte.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Accuracy</th>
<th>Mean Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylene Glycol</td>
<td>+/-12.6%</td>
<td>95%</td>
</tr>
</tbody>
</table>
List description of industry or Process/interferences present in sampling area:

<table>
<thead>
<tr>
<th>Sample Identification* (Maxumum of 20 characters)</th>
<th>Date Sampled</th>
<th>Collection Medium</th>
<th>Sample Volume</th>
<th>Sample Area*</th>
<th>Sample Units*: L, ml,min, in2, cm2, ft2</th>
<th>Analysis Requested*</th>
<th>Method Reference*</th>
<th>Hexavalent Chromium Process (e.g., welding, plating, painting, etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occ 1 Form MB3639</td>
<td>03/01/17</td>
<td>Assay N571 Alddehyde Badge</td>
<td>213</td>
<td>min</td>
<td>Formaldehyde</td>
<td>mod. OSHA 1007; HPLC/CUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occ 2 Form MB3492</td>
<td>03/01/17</td>
<td>Assay N571 Alddehyde Badge</td>
<td>197</td>
<td>min</td>
<td>Formaldehyde</td>
<td>mod. OSHA 1007; HPLC/CUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occ 3 Form MB3523</td>
<td>03/01/17</td>
<td>Assay N571 Alddehyde Badge</td>
<td>195</td>
<td>min</td>
<td>Formaldehyde</td>
<td>mod. OSHA 1007; HPLC/CUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occ 4 Form MB0309</td>
<td>03/01/17</td>
<td>Assay N571 Alddehyde Badge</td>
<td>221</td>
<td>min</td>
<td>Formaldehyde</td>
<td>mod. OSHA 1007; HPLC/CUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Blank Form MB3756</td>
<td>03/01/17</td>
<td>Assay N571 Alddehyde Badge</td>
<td>na</td>
<td>na</td>
<td>Formaldehyde</td>
<td>mod. OSHA 1007; HPLC/CUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occ 1 EG</td>
<td>03/01/17</td>
<td>OVS-7 Sampler/226-57</td>
<td>108</td>
<td>L</td>
<td>Ethylene glycol</td>
<td>mod. NIOSH 5523; GC/FID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occ 2 EG</td>
<td>03/01/17</td>
<td>OVS-7 Sampler/226-57</td>
<td>101</td>
<td>L</td>
<td>Ethylene glycol</td>
<td>mod. NIOSH 5523; GC/FID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occ 3 EG</td>
<td>03/01/17</td>
<td>OVS-7 Sampler/226-57</td>
<td>195</td>
<td>L</td>
<td>Ethylene glycol</td>
<td>mod. NIOSH 5523; GC/FID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occ 4 EG</td>
<td>03/01/17</td>
<td>OVS-7 Sampler/226-57</td>
<td>118</td>
<td>L</td>
<td>Ethylene glycol</td>
<td>mod. NIOSH 5523; GC/FID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Blank EG</td>
<td>03/01/17</td>
<td>OVS-7 Sampler/226-57</td>
<td>na</td>
<td>L</td>
<td>Ethylene glycol</td>
<td>mod. NIOSH 5523; GC/FID</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For metals analysis: if requesting an analyte with the option of a lower LOQ, please indicate if the lower LOQ is required (only available for certain analytes - see SAG).

For crystalline silica: form(s) of silica needed must be indicated (Quartz, Cristobalite, and/or Tridymite).

*Galson Laboratories will substitute our routine/preferred method if it does not match the method listed on the COC unless this box is checked: □ Use method(s) listed on COC

For metals analysis: if requesting an analyte with the option of a lower LOQ, please indicate if the lower LOQ is required (only available for certain analytes - see SAG).

For crystalline silica: form(s) of silica needed must be indicated (Quartz, Cristobalite, and/or Tridymite).

Chain of Custody:
Relinquished by: Amara Snively
Relinquished by:

Samples received after 3pm will be considered as next day's business.

Required fields. Failure to complete these fields may result in a delay in your samples being processed.
Exposure results are the average concentration for the period of time monitored. RptLmt = Reporting Limit. ND = None Detected at or above the reporting limit. The results relate only to the items tested. Unless noted below, samples were received in acceptable condition, all applicable quality control were within method specifications, lab blanks were subtracted before a result was reported, and any customer supplied field blanks were not subtracted from sample results. The molar volume at 25°C (24.45 L/mole) was used to calculate parts per million, ppm. Air concentrations reported are based upon field sampling information provided by the customer. For assistance with the content of this report, please visit the Customer Support section of our web site at http://www.assaytech.com or contact Technical Support at 1-800-833-1258. For details of significant method modifications go to www.assaytech.com/methmod.html.

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>Lab Code</th>
<th>Date Sampled</th>
<th>Client Sample ID</th>
<th>Media</th>
<th>Media Lot / Serial #</th>
<th>Analytes Requested</th>
<th>Quantity Found</th>
<th>Sample Vol. (L)</th>
<th>Time of Analysis</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>17000386</td>
<td>ATOH</td>
<td>01/03/2017</td>
<td>OCC 4</td>
<td>546C</td>
<td>3B16 - LS6753</td>
<td>METHYL ALCOHOL</td>
<td>ND</td>
<td>0.824</td>
<td>203</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>2.8 PPM</td>
</tr>
<tr>
<td>Analyzed By:</td>
<td>MWAGNER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyzed On:</td>
<td>1/6/2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved By:</td>
<td>KTAYLOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved On:</td>
<td>1/9/2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17000387</td>
<td>ATOH</td>
<td>01/03/2017</td>
<td>OCC 2</td>
<td>546C</td>
<td>3B16 - LS6738</td>
<td>METHYL ALCOHOL</td>
<td>5.17</td>
<td>0.438</td>
<td>108</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>5.2 PPM</td>
</tr>
<tr>
<td>Analyzed By:</td>
<td>MWAGNER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyzed On:</td>
<td>1/6/2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved By:</td>
<td>KTAYLOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved On:</td>
<td>1/9/2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17000388</td>
<td>ATOH</td>
<td>01/03/2017</td>
<td>OCC 1</td>
<td>546C</td>
<td>3B16 - LS5786</td>
<td>METHYL ALCOHOL</td>
<td>ND</td>
<td>0.783</td>
<td>193</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>2.9 PPM</td>
</tr>
<tr>
<td>Analyzed By:</td>
<td>MWAGNER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyzed On:</td>
<td>1/6/2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved By:</td>
<td>KTAYLOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved On:</td>
<td>1/9/2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17000389</td>
<td>ATOH</td>
<td>01/03/2017</td>
<td>OCC 3</td>
<td>546C</td>
<td>3B16 - LS6705</td>
<td>METHYL ALCOHOL</td>
<td>ND</td>
<td>0.771</td>
<td>190</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>3.0 PPM</td>
</tr>
<tr>
<td>Analyzed By:</td>
<td>MWAGNER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyzed On:</td>
<td>1/6/2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved By:</td>
<td>KTAYLOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved On:</td>
<td>1/9/2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17000390</td>
<td>ATOH</td>
<td>01/03/2017</td>
<td>FIELD BLANK</td>
<td>546C</td>
<td>3B16 - LS5252</td>
<td>METHYL ALCOHOL</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Analyzed By:</td>
<td>MWAGNER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyzed On:</td>
<td>1/6/2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved By:</td>
<td>KTAYLOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved On:</td>
<td>1/9/2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lab Work Order: 2017010070

Customer No.: 60013
Received Date: January 05, 2017
Date Reported: January 09, 2017

Project ID: 010 MM-16-127

PO No.:

<table>
<thead>
<tr>
<th>Lab Sample ID</th>
<th>Lab Code</th>
<th>Date Sampled</th>
<th>Client Sample ID</th>
<th>Media</th>
<th>Media Lot / Serial #</th>
<th>Analytes Requested</th>
<th>Quantity Found</th>
<th>Sample Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

Method References:

<table>
<thead>
<tr>
<th>TestCode</th>
<th>Analytes Requested</th>
<th>Method Reference</th>
<th>Regulatory Agency</th>
<th>TWA Limit</th>
<th>STEL Limit</th>
<th>Exposure Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>67561B</td>
<td>METHYL ALCOHOL</td>
<td>MOD OSHA 7</td>
<td>OSHA PEL/ACGIH STEL</td>
<td>200</td>
<td>250</td>
<td>PPM</td>
</tr>
</tbody>
</table>

Applicable OSHA PELs, ACGIH TLVs, or NIOSH RELS have been included in this lab report for guidance, but may not be sufficient for regulatory compliance. Clients should be aware that more stringent international, state, local, or organizational exposure limits may supersede the limits included with this report. Visit www.OSHA.gov/dsg/annotated-pels for detailed information on exposure limits and OSHA policies.

S. Green - Laboratory Director
K. Taylor - Ohio Supervisor
Reproductive and Developmental Hazard Management

John D. Meyer, MD, MPH, Melissa McDiarmid, MD, MPH, DABT,
James H. Diaz, MD, MPH, DrPH, Beth A. Baker, MD, MPH, and Melissa Hieb, DO,
ACOEM Task Force on Reproductive Toxicology

The magnitude, characterization, and control of occupational and environmental reproductive and developmental health risks are areas of active scholarly investigation. Scientific, epidemiological, and toxicological data concerning reproductive and developmental health risks have been determined for some chemicals, but data on many chemicals, physical agents, and biological agents are limited and, in some instances, nonexistent. Consequently, there may be considerable uncertainty about what action should be taken to adequately manage potential workplace reproductive health hazards.

The American College of Occupational and Environmental Medicine (ACOEM) has developed this guidance document to assist physicians and occupational health professionals in managing reproductive and developmental risks and uncertainties. This guidance describes measures to assess the magnitude of potential reproductive and developmental risks in the workplace and presents options to manage the uncertainty associated with these risks.

BACKGROUND

Industrial exposure limits promulgated for most chemical agents by the US Occupational Safety and Health Administration (OSHA), that is, permissible exposure limits (PELs), or those of the American Conference of Governmental Industrial Hygienists (ACGIH), that is, threshold limit values (TLVs), have in most cases been established without considering protection from adverse reproductive or developmental health effects. Therefore, compliance with OSHA exposure limits for many compounds may not ensure protection of reproductive health. Employees have the right to know about potential reproductive health hazards that are encountered in the workplace and the right to work in an environment that is free of significant reproductive health risks.

Reproductive toxicity is classically defined as the occurrence of adverse effects on the reproductive system of the male or female that may result from exposure to environmental agents. This toxicity may be expressed as alterations to female or male reproductive organs, related endocrine system, or abnormal pregnancy outcome. However, some definitions for reproductive toxicity also include subsequent effects on the offspring. Developmental toxicity can be defined as “the occurrence of adverse effects on the developing organism that may result from exposure before conception (either parent), during prenatal development, or post-natal to the time of sexual maturation. Adverse developmental effects may be detected at any point in the life span of the organism.”

In the US, all-encompassing “fetal protection policies,” which categorically exclude large classes of workers from specific tasks or types of employment, are illegal. The US Supreme Court ruled in the Johnson Controls decision that an employer could not exclude fertile women from lead-exposed jobs, holding that limitations on employment during pregnancy must relate to ability to perform the duties of the job, and that decisions on exposure of the fetus must be the right of the fully informed mother. Therefore, decisions on reducing occupational exposure to potential reproductive or developmental hazards and on work restrictions should be based on an individualized risk assessment for each employee and workplace reproductive policies must avoid gender discrimination.

MAGNITUDE OF WORKPLACE REPRODUCTIVE HEALTH PROBLEMS

Although the number of women in the workplace increased from 30 million in 1970 to more than 73 million in 2015, it is important to remember that many toxicants affect both male and female reproductive function and thus managing reproductive hazards is not confined to concerns about women of reproductive age. There are no reliable estimates concerning the number of either male or female workers who are at a significant risk of exposure to reproductive toxicants. However, reproductive health concerns among both workers and the general public are increasingly being raised in both the clinical setting and in the media.

EPIDEMIOLOGICAL DATA

Some of the uncertainty about specific toxicants that may present reproductive or developmental risk and its magnitude can be explained by the methodologic challenges of epidemiological studies addressing these questions. For example, spontaneous abortions commonly occur among the general population and some studies suggest that up to 40% of conceptuses undergo spontaneous abortion before the first missed menstrual period. Consequently, spontaneous abortion (miscarriage) can occur without a woman’s knowledge, making monitoring of this endpoint difficult. Other adverse outcomes might require very large study populations to have sufficient power to detect differences in exposure groups or to allow attribution of risk.

As well, reproductive studies can be confounded by multiple factors such as maternal age, history of sexually transmitted infections, frequency of sexual activity, and nutritional status, which are challenging to adjust for in statistical analyses. Other factors that can affect fertility, such as smoking, alcohol, medication, and drug use, general health, and socioeconomic status, can be more readily adjusted for in analyses. Thus, epidemiology studies must be examined in a context of the body of literature available, mindful of their limitations such as study design and recall bias and ultimately as only part of the assessment of the potential hazard a certain toxicant or exposure scenario presents.
REPRODUCTIVE AND DEVELOPMENTAL TOXICITY

Human reproduction involves multiple precisely timed processes, with windows of susceptibility beginning before conception for both the male and female and continuing through the birth of the offspring. A detailed description is beyond the scope of this document, but can be found in comprehensive texts on human reproduction and obstetrics (Appendix A). Reproductive toxic effects can occur in either parent or the offspring. Characteristics that distinguish reproductive toxicity from other toxic effects include the following: (1) adverse effects in an exposed person that may only manifest in the fetus or offspring (eg, an exposure to a reproductive toxicant in a male may produce an effect in the conceptus); (2) an effect such as infertility that may not become evident until children are desired and may therefore go unnoticed for long periods; and (3) normal reproductive function is only expressed intermittently. Disturbances of the reproductive process from occupational reproductive hazards can produce a broad range of potential adverse effects.

Developmental Toxicology

Developmental insult to the offspring can occur through toxicant exposures to either parent before conception, via exposures to the mother during pregnancy, and by exposures after birth via lactation or direct exposure to the child. Toxictants that cause mutations, epigenetic changes, or other damage to germ cell DNA can cause developmental toxicity (if they do not result in death of the germ cell). Germ cell lines and organ systems have different critical windows of development. Therefore, exposure to the same dose of a toxicant will have very different effects depending on the developmental stage of the fetus and offspring when the exposure occurs. The axiom that “the dose makes the poison” holds true for developmental toxicology only if one also takes into account the developmental stage at which the dose was delivered. Detailed reviews of critical developmental windows for different organ systems and their relevance to developmental toxicity have been published.9 The spectrum of possible adverse developmental effects from toxicant exposure includes death of the conceptus or offspring, malformation, altered function, decreased growth, and increased risk of diseases, such as cancer, heart disease, and diabetes, later in life.

AVAILABILITY OF REPRODUCTIVE TOXICOLOGY DATA

Occupational exposure to reproductive toxicants may occur via inhalation, skin absorption, or ingestion. However, there may be limited or no toxicological information available for many industrial chemicals. A recent review summarizes the scientific evidence linking environmental exposures to chemicals and radiation with the human adverse pregnancy outcomes.10 Several agents such as dibromochloropropane (DBCP), ionizing radiation, lead, and 2-bromopropane have been known to affect human spermatogenesis.11,12 Ionizing radiation and 2-bromopropane have also been recognized as destroying ovarian follicles.11,12 Table 1 outlines some of the most commonly recognized reproductive hazards by occupation and industry, recognizing that both the relative potency of the hazards listed and the strength of the evidence for their reproductive effects may vary. Table 2 lists some of the infectious agents that may affect fertility and fetal development. A much broader range of agents are recognized as having an effect upon, or the potential to produce, reproductive or developmental toxicity based on animal toxicology studies. A more detailed review of the potential risks of specific workplace exposures can be undertaken using the data sources for reproductive hazards listed in Appendix A once a work history and job tasks are ascertained.

FRAMEWORK FOR THE ASSESSMENT OF REPRODUCTIVE AND DEVELOPMENTAL HEALTH RISKS

The assessment of occupational reproductive and developmental risks, like any risk from an occupational hazard, involves several distinct steps, including hazard identification, dose–response assessment (when applicable), exposure assessment, and risk characterization. The process of risk assessment may require a multidisciplinary team of occupational health professionals from several disciplines, including occupational medical specialists, toxicologists, obstetrician/gynecologists, and exposure assessment specialists, such as industrial hygienists, and other health professionals.

Some workplaces have comprehensive occupational medicine and industrial hygiene resources and can assess workplace exposures and hazards throughout the worksite. In workplaces with appropriate engineering controls, existing industrial hygiene data may be able to confirm that all chemicals are well controlled, such that air concentrations are quite low or nondetectable and skin exposures are precluded by controls, work practices, or use of appropriate personal protective equipment (PPE). Review of the chemicals in use should be able to identify a subset of agents that might pose reproductive or developmental hazards at some dose (recognizing the limitations in the toxicology database). Regular review of new scientific study information from reproductive/developmental toxicity studies permits timely updates of risk characterizations.

A thorough medical and occupational and environmental history is essential. In addition to routine past medical and surgical history, family history, and prescription and over-the-counter medication and supplement history, a thorough gynecological and obstetric history should be obtained from the woman, and a reproductive history should be obtained for her partner. In addition, occupational tasks encountered in many jobs, such as heavy lifting or hard physical work, may affect pregnancy outcomes and these risk factors should be ascertained in an occupational history. A detailed exposure history of chemical, physical, and biological agents to which the employee is potentially exposed at work and in the home is critical. In addition, the work exposures of her partner should be identified. These would include active and inert ingredients. Safety data sheets (SDSs) can be obtained from employers to assist in identifying the components of various products used in the workplace. Pertinent nonoccupational factors in the social and personal history of both parents, such as alcohol, smoking, exercise, hobbies, or use of other drugs, personal care products, and cleaning agents that may also affect reproductive outcomes should be sought, in addition to medical conditions, and prior reproductive history.

A hazard evaluation of the agents to which the employee and her partner are exposed at work as well as at home then needs to be completed to identify which agents may pose reproductive or developmental risks. SDSs provide a source of information regarding the constituents in materials. Nevertheless, the manufacturer may not reveal the identity of all the ingredients in the product, as they are allowed to withhold that information for trade secret ingredients. In addition, SDSs vary in quality and detail, reflecting the resources and capabilities of the authors. Often, SDSs contain limited or no information regarding the potential reproductive and developmental toxicity of the ingredients; thus, one cannot rely solely upon the toxicology information they contain. However, new US and European Union regulations require manufacturers to incorporate a classification of ingredients according to the scheme developed by the United Nations Global Harmonized System, including their potential reproductive toxicity. After the phase-in period, these new SDSs should facilitate hazard identification by hazard type and include reproductive toxicity and carcinogenicity.13 (See
Appendix A for resources that may be useful in identifying reproductive/developmental hazards.)

Next, the extent of the employee’s and her partner’s exposures to the agents identified as reproductive or developmental hazards must be assessed (exposure assessment). Estimates of frequency of exposure, duration of exposure, and route(s) of exposure, and concentration or intensity should be obtained for each agent that may cause reproductive effects. It is also important to ascertain whether any exposure control measures, such as engineering controls or PPE, are used in the workplace or at home. If the employer has conducted personal exposure monitoring for the employee or her partner (eg, radiation dosimetry) or ambient exposure measurements in the workplace, the results should be obtained and reviewed. A worksite evaluation by an industrial hygienist may be very useful. For selected agents, such as lead or mercury, biological monitoring may aid in quantifying exposure.

Risk characterization considers all the gathered data on toxicity and exposure to determine whether the employee’s and/or her partner’s estimated levels of exposure to the agents that have been identified as potential reproductive and developmental hazards pose a risk. Their estimated exposure levels should be compared with levels that have been demonstrated or strongly suspected to cause adverse reproductive effects in epidemiological studies or animal studies. When attempting to determine safe or unsafe levels of exposure to humans by extrapolating from the results of animal studies, a safety or uncertainty factor is typically applied to relevant dose levels observed in the animal studies, such as the NOAEL (no observed adverse effect level) or LOAEL (lowest observed adverse effect level).

In the classical risk assessment paradigm, if either the employee or her partner is exposed to an agent above or near levels associated with adverse effects, then there is considered to be a significant risk. However, in the real world, there often are incomplete data both on the hazard identification side and on the exposure side, and recommendations must be made based on the available information.

Risk communication is the next critical step in which the employee and her partner are provided with the information they need to make informed decisions about the reproductive health risks of their exposures. It is important to answer all questions fully and to provide the best available information, including a discussion of the limitations of that information.

Risk management is the final step in the evaluation. It requires that the physician, patient, her partner, and their employers work together to decrease or eliminate any potential workplace (or nonworkplace) reproductive risks that were identified. Exposure reduction or elimination is the most desirable approach to risk management. Options include eliminating the chemical(s) or
agent(s) or replacing it with a safer one, implementing or improving engineering controls, designing and enforcing safer work practices, and issuing or upgrading PPE. If none of these can achieve a safe environment, restrictions or a temporary transfer may be required. If the employer cannot or will not reduce exposure and no unexposed job locations for a temporary transfer are available, then the employee may face the difficult decision of removing herself from the workplace or continuing to work in a situation that poses potential reproductive risks. Temporary disability benefits may not be available for an individual attempting to avoid exposure to prevent a possible adverse reproductive outcome. Temporary disability benefits are more likely to cover a pregnant woman in situations deemed to be high risk or with current pregnancy complications. Permanent removal from a job is the least desirable action, and it is important to help the employee and her husband evaluate all other possible options and uncertainties that might still exist with other workplace assignments.

The following case studies are intended to illustrate the application of these principles to evaluation of individual workers.

Case #1: Pre-Conception—A Male or Female Employee Indicates Intention to Conceive

A 29-year-old emergency department (ED) nurse is referred because she and her husband would like to try to conceive, but she is concerned about possible effects of her work exposures during early pregnancy. Her spouse is employed as a plant operator in the agriculture, animal care and traumatic injury. Animal care (cats)

TABLE 2. Infectious Agents Affecting Fertility and Fetal Development

<table>
<thead>
<tr>
<th>Organism</th>
<th>Occupational Risk</th>
<th>Sterility (M, F)</th>
<th>Perinatal Mortality</th>
<th>Prematurity</th>
<th>IUGR</th>
<th>Other Perinatal/Neonatal Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herpes simplex II</td>
<td>Health care</td>
<td>F > M</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Meningitis, seizures</td>
</tr>
<tr>
<td>Hepatitis B</td>
<td>Health care, sex workers</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>Carrier state</td>
</tr>
<tr>
<td>Human immunodeficiency virus</td>
<td>Health care, sex workers</td>
<td>–</td>
<td>?</td>
<td>+</td>
<td>+</td>
<td>Meningitis, seizures</td>
</tr>
<tr>
<td>Cytomegalovirus</td>
<td>Health care</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Meningitis, seizures</td>
</tr>
<tr>
<td>Parvovirus B19</td>
<td>Institutional outbreaks</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>Fetal anemia, hydrops</td>
</tr>
<tr>
<td>Rubella</td>
<td>Health care, schools, day care</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Meningitis, seizures, cardiac defects</td>
</tr>
<tr>
<td>Leptospira interrogans</td>
<td>Agriculture, sewerage workers</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>Spontaneous abortion, Jaundice, Hepatorenal failure</td>
</tr>
<tr>
<td>Listeria monocytogenes</td>
<td>Agriculture, animal care</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>Spontaneous abortion, neonatal sepsis, jaundice, meningitis</td>
</tr>
<tr>
<td>Brucella spp.</td>
<td>Agriculture, animal care</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>Spontaneous abortion, Epididymo-orchitis</td>
</tr>
<tr>
<td>Toxoplasma gondii</td>
<td>Animal care (cats)</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Meningitis, seizures, sepsis, chorioretinitis, microcephaly</td>
</tr>
<tr>
<td>Zika virus</td>
<td>Outdoor workers</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>Microcephaly, intracranial calcifications</td>
</tr>
</tbody>
</table>

IUGR, intrauterine growth restriction.

Performed as outlined in the framework above, a hazard evaluation and risk characterization of nursing work in the ED may disclose a broad range of potential hazards, including exposures to infectious diseases, radiation, manual patient lifting, and traumatic injury. However, in many cases, these hazards can be controlled or obviated to reduce risks to conception and to early pregnancy while the employee continues in productive work. Review and updating of the employee's immunization status can prevent the transmission of many vaccine-preventable diseases, including rubella and hepatitis B, which have adverse consequences for the fetus. Workplace hazard controls, such as the use of universal precautions for the prevention of infection transmission, x-ray protection procedures, and policies to reduce workplace violence and trauma, should be reviewed and examined and compliance measures reinforced if needed. Personal monitoring data, such as x-ray film badges, can be reviewed and an estimate of exposure and the effectiveness of control measures can be judged. These actions have the additional beneficial effect of protecting the employee's coworkers, many of whom may also be considering conceiving or have other health concerns over work. Close attention to mitigating the overall risks of the workplace is also valuable in helping to assure that inadvertent exposure to an unintended or unforeseen pregnancy has been reduced as much as possible. Given assurance that known or suspected hazards are properly controlled, the provider can be reassuring about continuation of work during conception and early pregnancy. Finally, careful attention should also be paid to specific circumstances of the work that may change over time, and recommendations adjusted as needed. For example, if a high risk of exposure to infections, such as H1N1 influenza or rubella, which are associated with congenital anomalies and other adverse obstetric outcomes, becomes apparent during an outbreak or pandemic, the provider should consider the possibility of job transfer or other means to reduce risk at conception or early pregnancy.

CASE #2: Pregnancy—An Employee Indicates She Is Pregnant

A 32-year-old aircraft maintenance technician, whose duties include engine testing, refueling, and repair of airplanes and
helicopters, is referred to the occupational physician after a positive pregnancy test. Her supervisor requests your recommendations regarding her fitness for duty. On the day of her clinic visit, it has been 8 weeks since her last menstrual period.

This is a much more common scenario than Case #1. It is too late to prevent exposures during the pre-conceptional period and embryonic period, when many of the major organ systems are forming. A hazard evaluation and exposure assessment similar to Case #1 of employee’s occupational and home environments needs to be performed in order to characterize the risks of the exposures that have already occurred and those that can be changed or stopped to prevent further possible damage. Examples of possible hazards may have been included in jet fuel, degreasing agents, and other solvents. Exposure to organic solvents during pregnancy has been associated with an increased risk of spontaneous abortion and may also be associated with an increased risk of birth defects.16-17 However, organic solvents represent a diverse group of chemicals with differing toxicological properties, and the epidemiological database is insufficient to draw conclusions about the reproductive and developmental toxicity of most individual organic solvents. An airplane technician may be exposed to high noise levels that may reach up to 120 dB during engine testing, and there is some suggestion that high noise exposures may affect the fetus (although this is controversial).18 In this example, the pregnant technician can readily protect her co-clear hair cells with well-fitted ear-muffs and plugs, but this can leave the fetus relatively unprotected because the abdominal wall, myometrium, and amniotic sac tissues can only attenuate high-frequency (> 500 Hz) sounds by 20 to 35 dB, and allow low-frequency (< 500 Hz) sounds to pass without attenuation.19

If the risk assessment indicates that significant exposures to developmental toxicants may have occurred, the development of the major organ systems can be evaluated with fetal ultrasound examination. If significant exposure to mutagens may have occurred, then referral to a genetic counselor or maternal fetal medicine specialist may be indicated. Termination of pregnancy is rarely indicated unless there is frank maternal poisoning or documented fetal effect. If exposure is negligible or low, then reassurance is generally indicated. In the intermediate situation in which no maternal poisoning or documented fetal effects have occurred, but the risk characterization leads to the conclusion that significant developmental risks exist in the workplace or home, then prevention of continued exposure to these risks must be the priority. In all these situations, it is important to fully communicate the risk characterization to the patient, including an assessment of the uncertainties and limitations in the conclusions that have been reached.

Finally, steps must be taken to reduce or eliminate the identified risks. The tiered risk management strategy outlined for Case #1 also applies here, but in this case of a pregnant employee, temporary disability leave is a possible option if the preferred alternatives of exposure reduction/elimination or temporary job transfer are not available and if one has concluded that the aircraft maintenance technician is subject to high-risk workplace exposure(s). Some pregnant employees may not wish to reveal their pregnancy to their employers. They may feel that it is intrusive to disclose their pregnancy or fear that they will be laid off if they disclose their pregnancy. Although it is illegal for an employer to terminate a worker because of pregnancy, such fears may not be groundless for some workers. In such situations, it is important for the physician to help the pregnant worker to fully understand and weigh the potential medical consequences of her decision.

As previously noted, about 49% of all pregnancies are unplanned.24 Pregnancy may not be recognized early enough for reassignment to protect a fetus during critical periods of development. These realities may reduce the effectiveness of a recommendation for self-reporting pregnancy. In addition, a requirement for employee notification of pregnancy, intended pregnancy, or infertility status to the employer may be viewed as intrusive and some employees may feel that this requires them to disclose intimate personal details. Such disclosure may include health information that would otherwise be protected under federal law. Employees may, for whatever reason, choose not to identify themselves as being at risk, making passive and universal preventive measures, as well as no-fault exposure reporting programs, all the more important.

CASE #3: Infertility

A 53-year-old firefighter and his wife, a 44-year-old hairdresser, have been trying to conceive without success for 2 years. They are concerned that occupational exposures have caused their troubles. Several issues are raised by this case. Fertility declines with age in both men and women. Twenty percent of married women aged 40 to 44 years are infertile.20 The chances for conception in less than 12 months in partners of men older than 40 years are half those of men younger than 25 years of age.21 On the contrary, both husband and wife in this scenario are employed in occupations that involve exposures to chemicals and, in the case of the husband, physical agents such as heat. Exposure to heat, resulting in increased scrotal temperature, has been associated with decreased semen quality.22,23 Hairdressers have been reported to have slightly lower fecundability (per cycle probability of conception) than controls,24 and hairdressing involves potential exposure to numerous chemicals (Table 1, hairdressers), some of which have been shown to cause reproductive toxicity in animal studies.25

A fertility specialist should evaluate both partners, as such an evaluation may yield the cause of infertility in many couples. It is estimated that 30% to 40% of infertility is due to male infertility issues such as sperm abnormalities; 45% to 55% is due to female infertility issues such as ovulatory problems; and 30% to 40% is due to tubal or peritoneal dysfunction.26 Decreased libido, impotence, intercourse timing, and intercourse frequency also affect fertility. Hazard evaluation, exposure assessments, and risk characterization should be done for both partners as outlined for Case #1. If there is significant workplace or home exposure to an agent known to cause infertility, then the couple needs to be informed of the available data and involved in decision making. The same, tiered risk management strategy outlined for Case #1, with the same caveat that temporary disability leave is not likely to be an option, applies in this case.

Case #4: Lifting

A healthy 28-year-old woman who works in the stockroom and shipping area of a manufacturing plant consults you to ask about the need for restrictions on lifting in her job; her last period was 10 weeks ago. This is her second pregnancy; the first pregnancy and birth were without complications. She frequently lifts and stacks boxes that weigh 15 to 20 pounds across her 8-hour shift; infrequently (four to five times per day), she will have to lift stacks of materials that weigh 40 pounds.

Questions are often directed to the contribution of physically demanding work and adverse pregnancy outcomes. Epidemiologic investigations have yielded mixed results. A meta-analysis of numerous studies demonstrated small but significant associations of high physical exertion, including heavy lifting, with preterm and small-for-gestational age birth, with odds ratios for these outcomes of 1.22 and 1.37, respectively.27 Prolonged standing and high cumulative work fatigue were also associated with preterm birth, although some later studies have failed to confirm these findings.28 On the contrary, leisure-time physical exertion, such as aerobic exercise, has not been found to be detrimental in pregnancy. More recently, guidelines for lifting in pregnancy were developed using the National Institute for Occupational Safety and Health’s
Case #5: Lead

A 32-year-old lead battery worker inquires about the possibility of becoming pregnant and wants to know whether her child may be adversely affected by her past lead exposure. She has worked at her current job for 10 years and has had annual blood lead levels recorded as part of a medical surveillance program. None has been greater than 18 micrograms per deciliter (μg/dL) of blood. Her current blood lead level is 14 μg/dL. A zinc protoporphyrin level is 65 μg/dL blood (upper limit of normal by laboratory 70). She has not had symptoms referable to lead exposure.

Recognition of the adverse neurocognitive and developmental effects of lead on the fetus and child has greatly increased over the past two decades. Recommendations have been made that maternal blood lead levels be no greater than 10 μg/dL at conception and during pregnancy to reduce the risk of neurological effects including cognitive delays. Infants’ and children’s lead levels should be kept at 5 μg/dL or lower. In addition, there is evidence that suggests an increased risk of spontaneous abortion at maternal lead levels above 10. Recommendations are therefore targeted at the delaying of conception until maternal levels are consistently below 10 and ideally below 5 μg/dL. This may entail providing a transfer to a job away from lead exposure and frequent monitoring of blood lead levels for women wishing to conceive. However, additional risks may become apparent for women who have had long-term occupational exposure to lead; as lead is deposited in bone with chronic exposure, the maternal body burden is increased beyond that which may be reflected by a blood lead level. Maternal osteoclastic activity increases in the second and third trimesters as a means of mobilization of calcium for the developing fetal skeleton. This phenomenon may lead to increased release of lead from bony storage depots and an unanticipated rise in maternal blood lead.

Consultation with an experienced toxicologist may be helpful in estimating body lead burden. As calcium supplementation may require the pregnant employee to submit information from her physician regarding her inability to work or need for job reassignment before granting any leave or reassignment.

Other laws aimed at protecting the pregnant employee are the Equal Employment Opportunity Act, the Americans with Disabilities Act (ADA), the related ADA Amendments Act (ADAAA) of 2008, and the Family and Medical Leave Act (FMLA). ADA and its 2008 amendments require reasonable accommodation by the employer on behalf of a worker with a qualified disability, unless the disabled worker presents a direct threat to her own or others’ health and safety, or the accommodation imposes an undue hardship on business operations. Until recently, pregnancy and related conditions had not been considered a qualifying disability under ADA, as the condition was considered temporary and of finite duration, as well as, in most cases, representing a normal physiological human state. In response to a rising number of complaints of pregnancy-related conditions made in the case above would be to attempt to limit heavy exertion and respirator use during pregnancy. The need for temporary reassignment will also be affected by an individual’s medical history or risk factors.

LEGAL CONSIDERATIONS

The main source of antidiscrimination protection afforded the pregnant employee is the 1978 Pregnancy Discrimination Act (PDA) Amendment to Title VII of the Civil Rights Act of 1964. Federal law protects against discrimination due to pregnancy, childbirth, or related medical conditions, and applies to employers, as well as state and local governments and labor organizations. PDA states that “Women who are pregnant or affected by related conditions must be treated in the same manner as other applicants or employees with similar abilities or limitations.” Thus, the employer should treat a pregnant employee unable to perform her job the same as other temporarily disabled employees. “For example, if the employer allows temporarily disabled employees to [perform modified tasks], perform alternative assignments or take disability leave or leave without pay, the employer also must allow an employee who is temporarily disabled due to pregnancy to do the same.” PDA also asserts that pregnant employees who are able to perform their jobs should be allowed to continue working, which includes situations in which women may have been absent for a pregnancy-related condition and have now recovered and can return to work. PDA does not determine or mandate the length of time an employee can take off during pregnancy or after delivery, only that pregnant workers should be treated the same as other temporarily disabled employees for the purposes of job modification or leave time, as well as for related benefits such as vacation calculation, pay increases, and accrual of seniority. If a pregnant woman does take time off, the job should be held for her as it would be for others on sick or disability leave, and any continuance or accrual of benefits that would occur during other types of disabilities should also relate to pregnancy-related conditions. In determining accommodations or leave for pregnancy-related conditions, the employer is permitted to require the pregnant employee to submit information from her physician.
related discrimination, as well as a broadening of the definition of qualifying disability under ADAAA, the US Equal Employment Opportunity Commission (EEOC) has recently provided guidance for compliance and enforcement of nondiscriminatory employment practices for the pregnant worker. This guidance is based on the premise that, although pregnancy itself may not be disabling, other conditions that co-occur with pregnancy may prevent or impair performance of one’s job during and after pregnancy. Job functions such as lifting capacity, ability to wear a respirator, or exposure to some chemical, physical, or biological hazards may be affected; pregnant workers may develop back pain, carpal tunnel syndrome, multiple gestations, history of preterm labor, or gestational diabetes that may be disabling through delivery and the puerperium.

The broader application of these laws and the new EEOC guidance to workplace pregnancy discrimination is being currently tested. The US Supreme Court issued a ruling in a relevant case (Young v UPS) in March 2015 that indicates employers will likely have to meet a high legal burden to justify accommodating other disabled employees but not pregnant women. Although the legal implications of this decision and other cases are not yet settled, employers should be aware that relevant disability statutes are being applied to pregnancy by EEOC, and that policies and plans should be developed to provide equal access to work and accommodations in a pregnancy-blind manner.

FMLA may be another legal recourse for employees who must leave or adjust work because of pregnancy or its complications. FMLA covers private sector employers with at least 50 employees within a 75-mile radius. Employees must have worked for the employer for at least 12 months or 1250 hours. Covered employers are required to provide up to 12 weeks of unpaid medical leave (job protected) during a 12-month period to eligible employees for childbirth and newborn care, adoption or foster care placement, care for immediate family members with a serious health condition, or to handle a serious personal health condition including pregnancy-related medical conditions. A health care provider must attest to the presence of a health condition in order for an employee to qualify for FMLA leave (job protected) during a 12-month period to eligible employees for childbirth and newborn care, adoption or foster care placement, care for immediate family members with a serious health condition, or to handle a serious personal health condition including pregnancy-related medical conditions. Physicians should be clear and thorough about the medical and ancillary requirements of their patients when completing required forms for leave under FMLA.

If accommodation or modified work cannot be provided for a pregnant worker, physicians should be aware that ‘disability’ is usually narrowly defined by insurance carriers and may not cover situations wherein employees are removed from work to prevent potential harm from occupational exposures. Even when disability leave is granted, compensation may be inadequate to assure economic security, especially for an already low-paid worker. Loss of corollary benefits, such as health insurance, may compound the worker’s problem. As noted, certain individuals may not qualify for FMLA, including those who work for small companies who have not met the time requirements of the job, or who may come under the purview of other federal agencies. Providers should be aware of these situations, and assist both patient and employer in navigating the difficult requirements of both safe work and economic security.

As with any US worker, the pregnant employee is afforded some measure of protection under other federal laws governing the responsibilities of employers to provide safe workplaces.
NOTIFICATION OF PREGNANCY

The purpose of employer notification by an employee of her pregnancy is to provide an opportunity for counseling the employee during pregnancy when potential reproductive risk is most relevant and to facilitate reduction of exposures, when appropriate. The employer may request that the employee’s personal physician confirm the pregnancy (or pregnancy concern) and/or comment on her ability to continue performing tasks associated with her job. However, the personal physician is often relatively unfamiliar with the workplace exposures and associated risks and job demands, so the communication between the occupational health professional and personal care provider is of vital importance. Notification is not an adequate substitute for aggressive risk assessment (to reduce or eliminate exposures to agents of potential concern) and communication, as in many cases notification of pregnancy may not be received until after the pregnancy is recognized and after the critical period of embryonic development. Employee notification of intended pregnancy, which is seemingly more intrusive, could offer the advantage of earlier intervention, but may conflict with employees’ right to privacy at work. The Nuclear Regulatory Commission (NRC) has established a mechanism for a pregnant worker potentially exposed to radiation to declare a pregnancy to her employer and thereby obtain additional training, more stringent monitoring to assure that exposures fall within recommended maximum limits for pregnancy, and, if needed, to be work reassigned. Although such notification is not legally required, NRC encourages such reporting in order that pregnant women can be effectively protected by exposure reduction during the pregnancy, 49 and to notify such individuals that legal protection exists that would allow the worker to avail herself of these measures. Even if notification is encouraged, some employees may choose not to identify themselves as pregnant or as planning a pregnancy. Therefore, employers must be proactive in identifying and controlling potential workplace reproductive and developmental hazards.

BREAST FEEDING POLICY

Health care providers who see nursing mothers who work in environments where they are exposed to substances that could be excreted in breast milk, such as selected organic solvents, metals, pesticides, and pharmaceutical agents should assess whether exposure would be sufficient to produce significant concentrations in the breast milk of lactating employees. Human breast milk has been determined to contain a broad range of potentially toxic contaminants into the home environment that could affect the development of offspring, for example, with “take home” lead exposures. 44 A number of approaches may be used to reduce or avoid contamination of the home environment and thereby protect a developing fetus or developing infant and child. These include improved housekeeping in the workplace, employer laundering of work clothes and protective garments, the construction and use of “clean” and “dirty” change rooms, and mandatory use of showers at the end of the workday.

Para-occupational exposures

Physicians should also consider that the worker may bring work contaminants into the home environment that could affect the development of offspring, for example, with “take home” lead exposures. A number of approaches may be used to reduce or avoid contamination of the home environment and thereby protect a developing fetus or developing infant and child. These include improved housekeeping in the workplace, employer laundering of work clothes and protective garments, the construction and use of “clean” and “dirty” change rooms, and mandatory use of showers at the end of the workday.

Reproductive health hazard management options

Several options should be considered in managing reproductive risks, performing risk assessments, and dealing with potential uncertainties. The decision to implement specific options at a specific workplace should be based upon an assessment of potential risks and upon the characteristics of the population at risk. Before implementing reproductive health hazard management measures in a company, legal review may be considered to ensure compliance with all federal, state, and other regulations pertaining to discrimination and protection of employees’ rights and disabilities.

Acknowledgments

The Task Force would also like to thank Michael Fischman, MD, MPH; Tina Foster, MD, MPH, MS; and Rose Goldman, MD, MOH, for providing medical review.

References

APPENDIX A – Additional Resources for Information about Reproductive Hazards

Internet Resources

Textbooks

