A practical approach to patients with anemia and hemolysis
Differential diagnosis algorithm for the evaluation of anemia

1. **ANEMIA**
 - **Assess MCV**
 - **Microcytic MCV**
 - Evaluate potential causes, such as:
 - Chronic disease (lata)
 - Iron deficiency
 - Lead intoxication
 - Sideroblastic anemia
 - Thalassemia
 - **Normocytic MCV**
 - Evaluate potential causes, such as:
 - Acute blood loss
 - Chronic disease
 - Chronic renal insufficiency
 - Hypothyroidism
 - Bone marrow suppression
 - Aplastic anemia
 - **Macrocytic MCV**
 - Evaluate potential causes, such as:
 - Aplastic anemia
 - Drugs (e.g., hydroxyurea, AZT, chemotherapeutic agents)
 - ET 2/4 hefe
 - Folate deficiency
 - Hypothyroidism

2. If above causes are excluded and/or anemia remains persistent and unexplained:
 - **Suspected hemolytic anemia**
 - (e.g., LDH↑ or reticulocyte count of ↑ bilirubin or ↓ hemoglobin)
 - **Positive for hemolysis**
 - Peripheral blood smear** and **Coombs test/DAT
 - Assess findings
 - Schistocytes present
 - Mechanical hemolysis **URGENT HEMATOLOGY CONSULT**
 - Evaluate potential causes, such as:
 - Thrombotic microangiopathy
 - Thrombotic thrombocytopenic purpura (TTP)
 - HUS
 - Abetalipoproteinemic syndrome (ALPS)
 - Abetalipoproteinemia
 - Disseminated intravascular coagulation (DIC)
 - Pregnancy-associated conditions
 - Hypertensioninduced hypertension
 - Cardiac conditions; consult cardiology
 - Acute stress
 - Vascular defect/pathology
 - **Negative for hemolysis**

3. Consider blood loss or impaired RBC production:
 - Evaluate potential causes, such as:
 - Acute blood loss
 - Aplastic anemia
 - Bone marrow suppression
 - Multiple myeloma
 - Chronic disease

4. Immune-mediated hemolytic anemia
 - Consult hematologist and evaluate potential causes, such as:
 - Warm (≥5°C) antibody hemolytic anemia
 - Cold agglutinin disease
 - Autoimmune

5. Hemoglobinopathies
 - Evaluate potential causes, such as:
 - Structural hemoglobin variants
 - Sickle cell anemia

6. Membranopathies
 - Evaluate causes consistent with observed morphology, such as:
 - Congenital spherocytic anemia (CSA)
 - Hereditary spherocytosis
 - Other spherocytosis

7. Enzymopathies
 - Evaluate potential causes, such as:
 - G6PD deficiency
 - Pyruvate kinase (PK) deficiency

8. PNH
 - Order high-sensitivity flow cytometry (HSFC)

Abbreviations and Notes:
- AT = antithrombin.
- BMT = bone marrow transplant.
- CAT = chemotherapeutic agents.
- CDT = carbohydrate-deficient transferrin.
- G6PD = glucose-6-phosphate dehydrogenase.
- HELLP = hemolysis, elevated liver enzymes, low platelet count.
- HUS = hemolytic uremic syndrome.
- LDH = lactate dehydrogenase.
- MCV = mean corpuscular volume.
- MDS = myelodysplastic syndrome.
- NSAIDs = nonsteroidal anti-inflammatory drugs.
- PNH = paroxysmal nocturnal hemoglobinuria.
- PCT = procalcitonin.
- PT = prothrombin time.
- WBC = white blood cell count.

Additional Notes:
- Be sure to consider the patient’s age and medical history.
- Hemolytic anemias are often associated with fever, jaundice, and splenomegaly.
- The differential diagnosis for anemia should consider both hematologic and nonhematologic causes.

Special Cases:
- PNH can occur concurrently with bone marrow failure, including aplastic anemia, myelodysplasia, and paroxysmal nocturnal hemoglobinuria.
- SCD may occur with aplastic anemia and leukemia because of the common genetic abnormality in hematopoiesis.
- Aplastic anemia may be more common in patients with chronic infections or autoimmune diseases.

References:
- See Greenberg et al. (2017) for a comprehensive review of anemia evaluation and management.
Markers of hemolysis in different hemolytic diseases

<table>
<thead>
<tr>
<th>Laboratory parameters</th>
<th>PNH</th>
<th>AIHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coombs test (DAT)</td>
<td>Negative</td>
<td>Positive</td>
</tr>
<tr>
<td>PNH cells (flow cytometry)</td>
<td>Present</td>
<td>Absent</td>
</tr>
<tr>
<td>LDH</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>Haptoglobin</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Indirect bilirubin</td>
<td>↑*</td>
<td></td>
</tr>
<tr>
<td>Reticulocyte count</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RBC morphology</td>
<td>No specific abnormalities</td>
<td></td>
</tr>
<tr>
<td>Hemoglobinuria</td>
<td>Sometimes</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>PNH</th>
<th>AIHA</th>
<th>Membrane/enzyme defects</th>
<th>CDA</th>
<th>TMA</th>
<th>Intravascular devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin (Hb)</td>
<td>——/—</td>
<td>— to —</td>
<td>—/—</td>
<td>—/—</td>
<td>—/—/—</td>
<td>—</td>
</tr>
<tr>
<td>Reticulocytes</td>
<td>— to ++</td>
<td>— to +++</td>
<td>++ to +++</td>
<td>—/—</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Eristocytes</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>LDH</td>
<td>+++</td>
<td>+/++</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Haptoglobin</td>
<td>—/—</td>
<td>—/—</td>
<td>—/—</td>
<td>—/—</td>
<td>—/—</td>
<td>—</td>
</tr>
<tr>
<td>Bilirubin</td>
<td>—/+</td>
<td>++</td>
<td>+/+</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Ferritin</td>
<td>— to +</td>
<td>+/-</td>
<td>++</td>
<td>+++</td>
<td>+/+</td>
<td>+</td>
</tr>
<tr>
<td>Platelets</td>
<td>+/-</td>
<td>+/-</td>
<td>+/-</td>
<td>—/-</td>
<td>+/-</td>
<td>—/-</td>
</tr>
<tr>
<td>WBC</td>
<td>—/-</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td>=/—</td>
</tr>
<tr>
<td>Hemosiderinuria</td>
<td>+ to +++</td>
<td>+/+</td>
<td>+</td>
<td>=</td>
<td>=</td>
<td>+/—</td>
</tr>
</tbody>
</table>

Adapted from Barcelo-Busi W et al., 2015. Values are expressed in a semi-quantitative style to indicate the different intensity of alteration in the various hemolytic syndromes, as follows: +/-+/++ indicate an increase from mild to severe, —/-/—/— indicates a reduction, and + indicates values within the normal range.

* In PNH, reticulocyte counts may be normal or decreased in patients with concurrent bone marrow failure.

AIHA, autoimmune hemolytic anemia; BM, bone marrow; CDA, congenital dyserythropoietic anemia; DAT, direct antigen test; LDH, lactate dehydrogenase; PNH, paroxysmal nocturnal hemoglobinuria; RBC, red blood cell; TMA, thrombotic microangiopathies; WBC, white blood cells.

References:

© 2021, Alexion Canada Pharma Corp.
CA/SOL-P/0081