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Evaluation of Diagnostic Tests

Brendan J. Barrett and John M. Fardy

Abstract

As technology advances, diagnostic tests continue to improve and each year, we are presented with new
alternatives to standard procedures. Given the plethora of diagnostic alternatives, diagnostic tests must be
evaluated to determine their place in the diagnostic armamentarium. The first step involves determining the
accuracy of the test, including the sensitivity and specificity, positive and negative predictive values,
likelihood ratios for positive and negative tests, and receiver operating characteristic (ROC) curves. The
role of the test in a diagnostic pathway has then to be determined, following which the effect on patient
outcome should be examined.
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1 Introduction

Diagnostic tests are used to increase the likelihood of the presence
or absence of illness, to provide prognostic information and, in
some situations, to predict a response to treatment. The ability of
a diagnostic test to identify a potential underlying disorder depends
not only on the characteristics of the test itself, but also on the
particular situation in which it is used. The prevalence of the disease
in the population, the specifics of the population studied, and the
spectrum of the disease being sought may influence the way a
diagnostic test performs. In this chapter, the characteristics of
diagnostic tests are examined together with how these character-
istics can be used to choose the most useful diagnostic tests. It
should be noted at the outset that the term “diagnostic test” is not
limited to laboratory or imaging studies, but can also include parts
or all of a clinician’s assessment. For example, Ehrenstein et al.
examined the ability of rheumatologists to diagnose rheumatoid
arthritis based on clinical assessment alone [1], while a meta-analy-
sis was used to assess the accuracy of the Lever sign to diagnose
anterior cruciate ligament tear [2]. The same methods to assess
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accuracy can even be applied to patient-reported measures as was
done for the prediction of mucosal inflammation in inflammatory
bowel disease [3].

In order to determine the accuracy of a diagnostic test, an
arbiter is necessary to decide whether the test result is correct or
not. This is known as the “gold standard” or reference standard. In
some instances, the “gold standard” is an established test or com-
bination of tests which confirms the diagnosis, while in other cases
the “gold standard” requires follow-up over time to confirm or
refute the diagnosis. When considering the characteristics of a
diagnostic test, one must consider the “gold standard” to which
it is compared and determine whether or not it is an appropriate
one. The comparison to the “gold standard” should be carried out
in a blinded fashion so as to prevent bias in the interpretation of the
diagnostic test or the reference standard. Further issues in the
design of diagnostic accuracy studies are discussed in a later section.

In the past, assessment of diagnostic tests might have been
limited to studies of accuracy, but it is now well recognized that
tests form part of a diagnostic pathway. Test results are used to alter
the probability of diagnoses in the context of what is already known
about the case and the results of other tests that might have been
completed at the same time. There is recognition that the results of
groups of tests may not be independent. As such, the specific
contribution of a particular test needs to be determined. This has
been discussed by Moons and colleagues, where the information
gain from adding a test can be quantified in terms of an increase in
the area under the ROC curve (see below), net reclassification
improvement, or by decision curve analysis [4]. Furthermore, fol-
lowing studies of the clinical validity of a test, the clinical utility
of the test then needs to be established [5]. There has been plenty
of literature on the best approach to assessing the clinical utility of
tests. Such evaluations may include learning about the full range of
effects of tests on patients: psychological, behavioral, and social
effects together with the impact of subsequent therapies on longer
term health outcomes and costs [6, 7].

2 Diagnostic Test Accuracy Criteria

2.1 Sensitivity and

Specificity

The classic parameters used to characterize a diagnostic test are the
sensitivity and specificity of the test. The sensitivity of a test refers to
its ability to identify persons with the disease. It can be defined as
“the proportion of people who truly have a designated disorder
who are so identified by the test” [8]. A very sensitive test is one
that identifies most people with the disorder in question. A test
which is very sensitive is prone to false-positive results, that is, it
may incorrectly label people as having the disease when, in fact, they
do not have it.
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The specificity of a test, on the other hand, refers to its ability to
correctly identify the disease in question. It can be defined as “the
proportion of people who are truly free of a designated disorder
who are so identified by the test” [8]. A very specific test would be
unlikely to incorrectly label an individual as having the disorder in
question if, in fact, they do not have the disorder. However, a test
that is very specific is more prone to false-negative results, that is, it
may fail to identify the disease in some persons who actually have it.

There is always a trade-off between sensitivity and specificity; as
one increases, the other tends to decrease [9]. The higher the
cut-off used to say a test is positive, the more specific the test
becomes, but this higher specificity comes at a price. As the
cut-off is increased, the sensitivity decreases and the test is more
likely to miss affected individuals. In some situations, such as
screening for a disease, a lower cut-off might be used to create a
very sensitive test so as not to miss anyone with the disorder in
question. In other situations, when using a test to confirm a diag-
nosis, a higher cut-off making the test highly specific would be
more desirable so as not to incorrectly label anyone with the
disorder.

The sensitivity and specificity of a diagnostic test can be calcu-
lated using information obtained by comparing the performance of
a diagnostic test to a gold standard or reference standard. Typically,
these results are summarized in a 2 � 2 contingency table as shown
in Table 1. Such tables can of course be extended to illustrate the
distribution of data at different test cut-offs. Sensitivity and speci-
ficity are not directly influenced by disease prevalence, but are
affected by the disease severity spectrum. A test that is sensitive
for detection of advanced disease may be less sensitive for detection
of earlier stages. An example would be the chest X-ray for detection
of lung cancer.

2.2 Positive and

Negative Predictive

Values

The sensitivity and specificity of a diagnostic test are useful to
describe how well a test performs, but they do not give us much
information on the significance of a positive or negative test for an

Table 1
Assessment of diagnostic tests using 2 � 2 contingency table

New test Gold standard
Positive Negative Total

Positive True positive a b False positive a + b
Negative False negative c d True negative c + d
Total a + c b + d

Sensitivity: a/(a + c)

Specificity: d/(b + d)

Positive predictive value: a/(a + b)
Negative predictive value: d/(c + d)
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individual patient. This information can be obtained from the
positive and negative predictive values of the test. The positive
predictive value describes “the proportion of people with a positive
test who have the disease” [9]. Similarly, the negative predictive
value describes “the proportion of people with a negative test who
are free of disease” [9]. These ratios are calculated across the table
rather than down the table using the formulae in Table 1. These
parameters are more useful to the clinician and the patient as they
give the predictive value of a positive and a negative test. A test with
a high positive predictive value makes the disease quite likely in a
subject with a positive test. A test with a high negative predictive
value makes the disease quite unlikely in a subject with a
negative test.

Although the positive and negative predictive values of a test
are intuitively more useful to the clinician and patient, the predic-
tive values are less stable and are dependent on the prevalence of
disease. This makes them less portable from population to popula-
tion. It also means that positive and negative predictive values
derived from a study may not apply to any given patient if that
patient’s pre-test probability of disease differs from the prevalence
of the disease in the study sample.

2.3 Case Study Let us take a hypothetical new test used to rapidly detect an infec-
tious process usually diagnosed by a culture technique, which may
take up to a month to provide a result (this is the case for several
newer tests for tuberculosis). In a cohort of affected and unaffected
subjects in which the prevalence of disease is 50%, how does the
new test compare to the culture technique? The results in Table 2
show a new test with excellent sensitivity and good specificity. This
test would be a good screening test and a reasonable confirmatory
test. The positive predictive value of 82% and the negative predic-
tive value of 88% suggest the new test is quite beneficial to patients
and doctors.

However, if the prevalence of the disease is 10% instead of 50%,
and the sensitivity and specificity are the same, the positive and

Table 2
Assessment of a new diagnostic test when prevalence of disease is 50%

New test Gold standard
Positive Negative Total

Positive 45 (a) 10 (b) 55
Negative 5 (c) 40 (d) 45
Total 50 50 100

Prevalence of disease ¼ 50/100 ¼ 50%
Sensitivity ¼ a/(a + c) ¼ 45/50 ¼ 90%

Specificity ¼ d/(b + d) ¼ 40/50 ¼ 80%

Positive predictive value ¼ a/(a + b) ¼ 45/55 ¼ 82%

Negative predictive value ¼ d /(c + d) ¼ 40/45 ¼ 88%
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negative predictive values change as shown in Table 3. Although
the negative predictive value has increased from 88% to 98%, the
positive predictive value has dropped to 33%. This test, which was
initially a very good predictor of disease when prevalence was 50%,
has much poorer positive predictive value when the disease preva-
lence drops to 10%. In fact, with lower disease prevalence, the test
produces twice as many false positives as true positives. In general,
diagnostic tests will function most efficiently when the prevalence
(or pre-test probability) is between 40% and 60% and provide much
less information at the extremes of pre-test probability [9]. This
points to a general point about tests: when you already are pretty
sure that a patient either does or does not have the diagnosis in
question, additional testing may not alter that probability very
much.

2.4 Likelihood Ratios The ideal test parameter would be one that has predictive value and
is stable with changes in prevalence. The likelihood ratio is such a
parameter. A likelihood ratio expresses the relative odds that a given
level of a diagnostic test result would be expected in a patient with
(as opposed to one without) the target disorder [8]. As with the
other parameters, likelihood ratios are calculated from the 2 � 2
table.

Likelihood ratio for a positive test.

LR+ ¼ (a/a + c)/(b/b + d) ¼ sensitivity/(1-specificity)

Likelihood ratio for a negative test.

LR� ¼ (c/a + c)/(d/b + d) ¼ (1-sensitivity)/specificity

Because the likelihood ratios are calculated from the sensitivity
and specificity, they are also stable with changes in prevalence of
disease. The predictive value of the likelihood ratio calculates the
post-test odds of disease from the pre-test odds of disease using the
following formula:

Post-test odds ¼ Pre-test odds � LR+

Table 3
Assessment of a new diagnostic test when prevalence of disease is 10%

New test Gold standard
Positive Negative Total

Positive 45 (a) 90 (b) 135
Negative 5 (c) 360 (d) 365
Total 50 450 500

Prevalence of disease ¼ 50/500 ¼ 10%

Sensitivity ¼ a/(a + c) ¼ 45/50 ¼ 90%

Specificity ¼ d/(b + d) ¼ 360/450 ¼ 80%
Positive predictive value ¼ a/(a + b) ¼ 45/135 ¼ 33%

Negative predictive value ¼ c/(c + d) ¼ 360/365 ¼ 98%
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The pre-test odds of disease is similar to the pre-test probability
of disease and can be calculated with the following formula:

Pre-test odds ¼ Pretest probability/(1 – Pre-test probability)

The pre-test probability of disease is usually estimated from the
clinical information or from published reports.

A diagnostic test with likelihood ratios near unity does not have
much effect on the post-test probability of disease and therefore is
not very useful for decision-making. On the other hand, very large
LR+ or very small likelihood LR- ratios have a significant impact on
the post-test probability of disease. An LR for a positive test of
10 or more means that a positive test is good at ruling in a diagnosis
while an LR for a negative test of 0.1 or less means that a negative
test is good at ruling out a diagnosis [10]. Likelihood ratios
between 5–10 if test positive or 0.1–0.2 if test negative lead to
moderate changes in the post-test probability while those between
2–5 (0.2–0.5) lead to smaller changes.

The use of likelihood ratios to characterize diagnostic tests
highlights the importance of the pre-test probability of disease in
the performance of a diagnostic test. If the pre-test probability of
disease is very high or very low, a diagnostic test will have to be very
good to make a significant difference in the post-test probability of
disease. Diagnostic tests will perform best when the pre-test proba-
bility of disease is about 50% and generally will perform less well at
the extremes of pre-test probability [9]. If the pre-test probability
of disease is so high or so low as to rule in or rule out a diagnosis, a
diagnostic test is not warranted [10]. This statistical approach to
modifying prior probabilities (or odds) in light of new information
is Bayesian.

2.5 Overall Test

Accuracy

These various parameters used to characterize diagnostic tests can
help in choosing one test over another, but they do not provide a
summary estimate of the accuracy of the test. The receiver
operating characteristic (ROC) curve can be used for this purpose.
An ROC curve is a plot of test sensitivity (plotted on the y-axis)
versus its false-positive rate (1 – specificity) (plotted on the x-axis)
[11]. As the cut-off value for a positive test is moved up or down,
the sensitivity and specificity of the test change. Figure 1 is an
example of an ROC curve for a hypothetical diagnostic test. In
this example, raising the cut-off value would lead to high specificity
and low sensitivity, with coordinates toward the lower left-hand
corner of the curve. Lowering the cut-off value for a positive test
would lead to a progressive increase in sensitivity and a progressive
decrease in specificity moving up along the curve toward the upper
right-hand corner. The point on the curve closest to the upper left-
hand corner (which represents 100% sensitivity and 100% specific-
ity) would represent the cut-off value which offers the best balance
between sensitivity and specificity. This may not always be the best
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cut-off to choose, depending on the purpose of the test. For a
screening test, sensitivity would be favored over specificity, while
for a confirmatory test specificity would be favored over sensitivity.
In general, one needs to consider the clinical impact of false-
positive and false-negative test results and weigh these against
each other to determine the most useful cutoff for any given
context.

The ROC curve also provides information on the overall accu-
racy of the diagnostic test. The area under the ROC curve (the area
to the right of the curved line in Fig. 1) is a popular measure of the
accuracy of a diagnostic test [11]. The ROC curve area can take on
values between 0.0 and 1.0, with an area of 1.0 representing a
perfectly accurate test. A test with an area of 0.0 is perfectly inaccu-
rate; all patients with the disease have negative results, while all
those without the disease have positive results. Such a test would
have perfect accuracy if the interpretation of the test were reversed.
Therefore, the practical lower bound for the area under the ROC
curve is 0.5, which is bounded by the straight line from coordinates
0–11. This line is known as the chance diagonal on an ROC plot
[11]. The area under the ROC curve can be used to compare the
accuracy of diagnostic tests. It should be noted that in a given study
the area under the curve is an estimate with an associated standard
error. This can be used to calculate confidence intervals around the
estimated area and is also used when the areas under the ROC
curves associated with different tests are being compared. Both
parametric and non-parametric statistical procedures exist to
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Fig. 1 Receiver operating characteristic (ROC) curve for assessing diagnostic
tests
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compare areas under ROC curves, including adjustments for paired
samples if the two tests being compared were completed within the
same subjects [12, 13].

If the concern is the accuracy of a test, the percentage of
patients correctly classified by the test under evaluation can be
assessed. In Table 1, accuracy can be calculated as follows:

Accuracy: (a+d)/(a+b+c+d)

Unfortunately, the overall accuracy is highly dependent on the
prevalence of the disease. Another option for a single indicator of
test performance is the diagnostic odds ratio (DOR). This is the
ratio of the odds of positivity in the diseased relative to the odds of
positivity in the non-diseased [14]. Like the odds ratio in any 2� 2
table it is calculated using the following formula:

DOR ¼ ad/bc

There is also a close relationship between the DOR and the
likelihood ratios:

DOR ¼ LR+ / LR� [14]

The value of the DOR ranges from 0 to infinity with higher
values associated with better performance of a diagnostic test. A
value of 1 suggests that a test does not discriminate well between
those with and without the target disorder, while values lower than
1 suggest improper interpretation of the diagnostic test (more
negative tests among the diseased). As with likelihood ratios, the
DOR is not dependent on the prevalence of disease, but like
sensitivity and specificity is influenced by the disease spectrum in
the study population [14]. The DOR can also be useful in meta-
analysis of diagnostic studies.

In all of the previous discussion, it has been assumed that the
reference or “gold” standard will yield a binary outcome of disease
presence or absence. However, this is not always the case, as for
example when echocardiographically determined left ventricular
mass as a continuous measure serves as the reference standard
when evaluating features of the ECG as a diagnostic test. In that
case, a different statistical approach has been proposed for estimat-
ing sensitivity, specificity, and the ROC curve [15]. An alternate
approach using information theoretical concepts also permits con-
sideration of quantitative reference results while explicitly taking
into account variation in pre-test probabilities [16].

In addition, the reference standard itself may not always be
perfect, and in that situation the use of Bayesian latent class models
can allow evaluation of novel tests [17–19]. A web-based applica-
tion has been developed to allow the less statistically accomplished
researcher to complete the required analyses via a user-friendly
interface [20].
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3 Design of Diagnostic Accuracy Studies

Given the various tools available, how would one set out to evaluate
a new diagnostic test? The criteria have been discussed in standard
textbooks of clinical epidemiology and are outlined below
[8, 9]. These criteria center around a blinded evaluation of the
new test versus a “gold standard” in an appropriate population.
The reproducibility and the interpretation of the test should be
standardized and the test procedure should be well described.
Finally, the clinical utility should be documented.

The importance of a blinded evaluation of the diagnostic test
versus the reference standard is paramount in the evaluation of a
new diagnostic test. Knowledge of the results of either the diag-
nostic test or the reference standard could lead to bias when inter-
preting the results of the other. Lack of a blinded comparison
would invalidate the results of the study.

The population chosen for study is also a critical factor in the
assessment of a diagnostic test. Test performance will vary with
disease prevalence and with disease severity, such that diagnostic
test performance often varies across population subgroups
[21, 22]. The sample population chosen for evaluation of the
diagnostic test should be similar to the population for which the
test is intended, in terms of both the prevalence and severity of the
disease. The comparison group should be comprised of individuals
from that group, those suspected of having the target disorder but
not actually having the disease as opposed to “normal” individuals.
In essence, the test should be evaluated under the same conditions
in which it will be used. Assessing test accuracy in samples selected
to include cases with obvious or severe disease as well as healthy
controls will tend to overestimate the accuracy of the test under
routine conditions. Similarly, it would be inappropriate to exclude
cases from a study of test accuracy post hoc based on the results of
the gold standard as doing so will lead to biased estimates of test
accuracy under field conditions [23].

In studies of the accuracy of diagnostic tests, it is important that
all members of the sample population undergo both the test being
assessed as well as the “gold standard.” In a systematic review of the
sources of bias and variation in diagnostic test accuracy studies,
Whiting and colleagues found that use of a case–control design,
observer variability, availability of clinical information, choice of
reference standard, disease prevalence and severity as well as verifi-
cation biases were the major sources with generally greater impact
on the estimate of sensitivity than specificity [24]. Methods for
determining sample size for studies of the accuracy of diagnostic
tests are tailored to the particular indices that are being studied.
Sample size estimates can be calculated for several accuracy indices
including sensitivity and specificity, the area under the receiver
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operating characteristic curve, the sensitivity at a fixed false-positive
rate, and the likelihood ratio [25].

The reproducibility of the test should also be evaluated partic-
ularly when it involves a subjective interpretation of the results.
Both the inter-observer and intra-observer variation should be
examined and evaluated with an appropriate measure, such as a
kappa statistic, which reveals the degree of agreement between
test readers. The test procedure should be well described so that
it can be replicated by others. As well, there may be a significant
learning curve associated with the interpretation of a new diagnos-
tic test and this must be taken into account as the test is evaluated.

Given the plethora of studies that may exist evaluating the
accuracy of a given diagnostic test, there has been interest in com-
pletion of diagnostic test accuracy systematic reviews and meta-
analyses. The challenges involved have been addressed by a
Cochrane Methods group [26]. A systematic review of the major
sources of bias has been reported [18]. Tools were developed to
assess the quality of the constituent studies [27, 28]. Challenges are
often posed by heterogeneity in the design, setting, and results of
the various primary studies. Care needs to be taken when formulat-
ing the questions for the systematic review. A PRISMA guideline
recommending preferred reporting items in systematic reviews of
diagnostic test accuracy studies has been published [29], but evalu-
ation of recently published systematic reviews shows that reports
are still not fully informative [30].

Finally, there have been many reports in the past few years
where machine learning or other deep learning techniques have
been applied to development or assessment of diagnostic tests [31–
35]. Technology is also creeping into diagnostic processes with the
use of Smartphone and Computer-assisted techniques [36, 37].

4 Factors Relevant to the Choice of Diagnostic Tests

The choice of diagnostic tests is certainly influenced by test perfor-
mance, but this is not the only important factor to be considered.
Although a Ferrari may outperform the competition, its cost and
seating capacity may make it unsuitable for the job at hand. In
choosing a diagnostic test, one must consider, in addition to test
performance, the cost, availability, acceptability, and utility of the
diagnostic test. A practical hierarchy can be defined based on
(1) diagnostic power or performance, (20 availability and accept-
ability where considered relevant, and (3) cost [38]. When several
test options exist for a given scenario, network meta-analysis has
been used to compare them at different test cut-offs [39]. Evalua-
tion of costs alongside clinical impacts can be done using cost-
effectiveness approaches [40].
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Cost and availability are obvious concerns when one considers
the choice of diagnostic tests. A very expensive test with limited
availability would have to outperform standard tests by a wide
margin before it could be considered for routine use. The accept-
ability of the diagnostic test is also a major concern, particularly for
the patient. An invasive test with potentially serious complications
will not be accepted readily by patients, particularly if there is a
safer, non-invasive alternative. One must also consider that infor-
mation produced in research about diagnostic tests is utilized by
several different types of decision makers who are interested in
different types of information [41]. Policy-making organizations
will be more concerned with the “evidence-based” assessment and
cost of testing, while patients may place more emphasis on anec-
dotal experience and the reassurance value of testing. Physicians will
typically find themselves acting as representatives of the medical
profession and its body of knowledge, and as advocates for each
patient [41].

The final arbiter in the choice of diagnostic tests is the clinical
utility of the test under scrutiny. Studies of diagnostic test accuracy
may, on their own, provide sufficient information to infer clinical
value if a new diagnostic test is safer or more specific than the old
test, provided both are of similar sensitivity and that treatment
based on results of the old test has been shown to improve patient
outcomes in clinical trials [42]. Establishing whether a new test
improves patient outcomes beyond the outcomes achieved using an
older test or maybe no test prior to treatment may require the
completion of randomized trials [43]. A randomized trial can assess
the outcomes of patients undergoing testing, document adverse
effects, and assess impact on management decision-making and
measure patient satisfaction and the cost-effectiveness of testing
[44]. A variety of randomized designs have been proposed with
the choice among them depending upon the objective of testing
and whether alternative test/treat strategies are to be compared
[45]. A framework for evaluating the links and mechanisms
whereby outcomes are impacted in diagnostic test/treat trials has
been proposed [46]. Concerns have been raised about the effi-
ciency of some designs proposed for test/treat trials. It has been
suggested that in the case where two tests are being compared in
terms of clinical utility, a paired design in which each participant
undergoes both tests with subsequent treatment only randomly
assigned when the test results are discordant may be more efficient
[47]. Sample size formulae for binary and continuous outcomes
have also been proposed by the same authors [47]. Ethical issues
that arise in relation to these trials include the need for equipoise,
not so much with regard to the relative accuracy of tests, but rather
with regard to the comparative health impact of alternative test/
treat strategies. In addition, if a clustered design is followed, there is
a need for those who decline participation to be aware that the
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whole diagnostic process in a particular clinic or hospital, for exam-
ple, may be influenced by the assignment of that site to a novel test/
treat strategy for the trial [48].

As commonly done in economic analyses, decision models can
also be used to compare various test/treat strategies, but the results
depend critically on the accuracy of the assumptions and estimates
used to build and inform the models [6].

5 Combinations of Diagnostic Tests

Diagnostic tests are often applied in groups or profiles or may be
used sequentially to improve precision in diagnosis. Studies of test
combinations have to consider the non-independence of the
results. Novielli and colleagues have described a framework to do
that in relation to diagnosis of deep vein thrombosis [49]. Similarly,
various combinations of liquid-based cytology and human papil-
loma virus testing have been evaluated for screening for cervical
in-situ neoplastic lesions [50].

6 Conclusion

Diagnostic test performance can be assessed using a number of
different measures which assess the accuracy and predictive value
of the tests. The choice of diagnostic tests, however, is more com-
plex than a simple assessment of performance, and consideration of
broader issues such as patient outcomes, acceptability and cost-
effectiveness of testing is necessary. By using the appropriate criteria
to assess diagnostic test performance, followed by randomized trials
to measure clinical utility, the choice of the best diagnostic test to
solve a diagnostic problem can be made.
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